1
|
Ergün S, Aslan S, Demir D, Kayaoğlu S, Saydam M, Keleş Y, Kolcuoğlu D, Taşkurt Hekim N, Güneş S. Beyond Death: Unmasking the Intricacies of Apoptosis Escape. Mol Diagn Ther 2024; 28:403-423. [PMID: 38890247 PMCID: PMC11211167 DOI: 10.1007/s40291-024-00718-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/20/2024]
Abstract
Apoptosis, or programmed cell death, maintains tissue homeostasis by eliminating damaged or unnecessary cells. However, cells can evade this process, contributing to conditions such as cancer. Escape mechanisms include anoikis, mitochondrial DNA depletion, cellular FLICE inhibitory protein (c-FLIP), endosomal sorting complexes required for transport (ESCRT), mitotic slippage, anastasis, and blebbishield formation. Anoikis, triggered by cell detachment from the extracellular matrix, is pivotal in cancer research due to its role in cellular survival and metastasis. Mitochondrial DNA depletion, associated with cellular dysfunction and diseases such as breast and prostate cancer, links to apoptosis resistance. The c-FLIP protein family, notably CFLAR, regulates cell death processes as a truncated caspase-8 form. The ESCRT complex aids apoptosis evasion by repairing intracellular damage through increased Ca2+ levels. Antimitotic agents induce mitotic arrest in cancer treatment but can lead to mitotic slippage and tetraploid cell formation. Anastasis allows cells to resist apoptosis induced by various triggers. Blebbishield formation suppresses apoptosis indirectly in cancer stem cells by transforming apoptotic cells into blebbishields. In conclusion, the future of apoptosis research offers exciting possibilities for innovative therapeutic approaches, enhanced diagnostic tools, and a deeper understanding of the complex biological processes that govern cell fate. Collaborative efforts across disciplines, including molecular biology, genetics, immunology, and bioinformatics, will be essential to realize these prospects and improve patient outcomes in diverse disease contexts.
Collapse
Affiliation(s)
- Sercan Ergün
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey.
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey.
| | - Senanur Aslan
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey
| | - Dilbeste Demir
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Sümeyye Kayaoğlu
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Mevsim Saydam
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Yeda Keleş
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Damla Kolcuoğlu
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Neslihan Taşkurt Hekim
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey
| | - Sezgin Güneş
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
2
|
Safe S. Specificity Proteins (Sp) and Cancer. Int J Mol Sci 2023; 24:5164. [PMID: 36982239 PMCID: PMC10048989 DOI: 10.3390/ijms24065164] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/10/2023] Open
Abstract
The specificity protein (Sp) transcription factors (TFs) Sp1, Sp2, Sp3 and Sp4 exhibit structural and functional similarities in cancer cells and extensive studies of Sp1 show that it is a negative prognostic factor for patients with multiple tumor types. In this review, the role of Sp1, Sp3 and Sp4 in the development of cancer and their regulation of pro-oncogenic factors and pathways is reviewed. In addition, interactions with non-coding RNAs and the development of agents that target Sp transcription factors are also discussed. Studies on normal cell transformation into cancer cell lines show that this transformation process is accompanied by increased levels of Sp1 in most cell models, and in the transformation of muscle cells into rhabdomyosarcoma, both Sp1 and Sp3, but not Sp4, are increased. The pro-oncogenic functions of Sp1, Sp3 and Sp4 in cancer cell lines were studied in knockdown studies where silencing of each individual Sp TF decreased cancer growth, invasion and induced apoptosis. Silencing of an individual Sp TF was not compensated for by the other two and it was concluded that Sp1, Sp3 and Sp4 are examples of non-oncogene addicted genes. This conclusion was strengthened by the results of Sp TF interactions with non-coding microRNAs and long non-coding RNAs where Sp1 contributed to pro-oncogenic functions of Sp/non-coding RNAs. There are now many examples of anticancer agents and pharmaceuticals that induce downregulation/degradation of Sp1, Sp3 and Sp4, yet clinical applications of drugs specifically targeting Sp TFs are not being used. The application of agents targeting Sp TFs in combination therapies should be considered for their potential to enhance treatment efficacy and decrease toxic side effects.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
3
|
Jinesh GG, Brohl AS. Classical epithelial-mesenchymal transition (EMT) and alternative cell death process-driven blebbishield metastatic-witch (BMW) pathways to cancer metastasis. Signal Transduct Target Ther 2022; 7:296. [PMID: 35999218 PMCID: PMC9399134 DOI: 10.1038/s41392-022-01132-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/14/2022] [Accepted: 07/24/2022] [Indexed: 12/13/2022] Open
Abstract
Metastasis is a pivotal event that accelerates the prognosis of cancer patients towards mortality. Therapies that aim to induce cell death in metastatic cells require a more detailed understanding of the metastasis for better mitigation. Towards this goal, we discuss the details of two distinct but overlapping pathways of metastasis: a classical reversible epithelial-to-mesenchymal transition (hybrid-EMT)-driven transport pathway and an alternative cell death process-driven blebbishield metastatic-witch (BMW) transport pathway involving reversible cell death process. The knowledge about the EMT and BMW pathways is important for the therapy of metastatic cancers as these pathways confer drug resistance coupled to immune evasion/suppression. We initially discuss the EMT pathway and compare it with the BMW pathway in the contexts of coordinated oncogenic, metabolic, immunologic, and cell biological events that drive metastasis. In particular, we discuss how the cell death environment involving apoptosis, ferroptosis, necroptosis, and NETosis in BMW or EMT pathways recruits immune cells, fuses with it, migrates, permeabilizes vasculature, and settles at distant sites to establish metastasis. Finally, we discuss the therapeutic targets that are common to both EMT and BMW pathways.
Collapse
Affiliation(s)
- Goodwin G Jinesh
- Department of Molecular Oncology, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA. .,Sarcoma Department, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA.
| | - Andrew S Brohl
- Department of Molecular Oncology, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA. .,Sarcoma Department, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA.
| |
Collapse
|
4
|
Jinesh GG, Napoli M, Smallin MT, Davis A, Ackerman HD, Raulji P, Montey N, Flores ER, Brohl AS. Mutant p53s and chromosome 19 microRNA cluster overexpression regulate cancer testis antigen expression and cellular transformation in hepatocellular carcinoma. Sci Rep 2021; 11:12673. [PMID: 34135394 PMCID: PMC8209049 DOI: 10.1038/s41598-021-91924-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
A subset of hepatocellular carcinoma (HCC) overexpresses the chromosome 19 miRNA cluster (C19MC) and is associated with an undifferentiated phenotype marked by overexpression of cancer testis antigens (CTAs) including anti-apoptotic melanoma-A antigens (MAGEAs). However, the regulation of C19MC miRNA and MAGEA expression in HCCs are not understood. Here we show that, C19MC overexpression is tightly linked to a sub-set of HCCs with transcription-incompetent p53. Using next-generation and Sanger sequencing we found that, p53 in Hep3B cells is impaired by TP53-FXR2 fusion, and that overexpression of the C19MC miRNA-520G in Hep3B cells promotes the expression of MAGEA-3, 6 and 12 mRNAs. Furthermore, overexpression of p53-R175H and p53-R273H mutants promote miR-520G and MAGEA RNA expression and cellular transformation. Moreover, IFN-γ co-operates with miR-520G to promote MAGEA expression. On the other hand, metals such as nickel and zinc promote miR-526B but not miR-520G, to result in the suppression of MAGEA mRNA expression, and evoke cell death through mitochondrial membrane depolarization. Therefore our study demonstrates that a MAGEA-promoting network involving miR-520G, p53-defects and IFN-γ that govern cellular transformation and cell survival pathways, but MAGEA expression and survival are counteracted by nickel and zinc combination.
Collapse
Affiliation(s)
- Goodwin G Jinesh
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA. .,Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.
| | - Marco Napoli
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Marian T Smallin
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.,Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Andrew Davis
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Hayley D Ackerman
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Payal Raulji
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Nicole Montey
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Elsa R Flores
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Andrew S Brohl
- Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA. .,Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.
| |
Collapse
|
5
|
Godwin I, Anto NP, Bava SV, Babu MS, Jinesh GG. Targeting K-Ras and apoptosis-driven cellular transformation in cancer. Cell Death Discov 2021; 7:80. [PMID: 33854056 PMCID: PMC8047025 DOI: 10.1038/s41420-021-00457-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/23/2021] [Accepted: 03/21/2021] [Indexed: 02/07/2023] Open
Abstract
Cellular transformation is a major event that helps cells to evade apoptosis, genomic instability checkpoints, and immune surveillance to initiate tumorigenesis and to promote progression by cancer stem cell expansion. However, the key molecular players that govern cellular transformation and ways to target cellular transformation for therapy are poorly understood to date. Here we draw key evidences from the literature on K-Ras-driven cellular transformation in the context of apoptosis to shed light on the key players that are required for cellular transformation and explain how aiming p53 could be useful to target cellular transformation. The defects in key apoptosis regulators such as p53, Bax, and Bak lead to apoptosis evasion, cellular transformation, and genomic instability to further lead to stemness, tumorigenesis, and metastasis via c-Myc-dependent transcription. Therefore enabling key apoptotic checkpoints in combination with K-Ras inhibitors will be a promising therapeutic target in cancer therapy.
Collapse
Affiliation(s)
- Isha Godwin
- Saveetha Medical College, Thandalam, Chennai, Tamil Nadu, 602105, India.
| | - Nikhil Ponnoor Anto
- Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Smitha V Bava
- Department of Biotechnology, University of Calicut, Malappuram, Kerala, 673635, India
| | - Mani Shankar Babu
- Department of Botany, University College, Thiruvananthapuram, Kerala, 695 034, India
| | - Goodwin G Jinesh
- Departments of Molecular Oncology, and Sarcoma, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
6
|
Regulation of MYO18B mRNA by a network of C19MC miRNA-520G, IFN-γ, CEBPB, p53 and bFGF in hepatocellular carcinoma. Sci Rep 2020; 10:12371. [PMID: 32704163 PMCID: PMC7378193 DOI: 10.1038/s41598-020-69179-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
MYO18B has been proposed to contribute to the progression of hepatocellular carcinoma (HCC). However, the signals that govern MYO18B transcription are not known. Here we show that, a network of C19MC miRNA-520G, IFN-γ, CEBPB and p53 transcriptional-defects promote MYO18B mRNA expression in HCCs. IFN-γ by itself suppresses MYO18B transcription, but promotes it when miRNA-520G is stably overexpressed. Similarly, CEBPB-liver-enriched activator protein (LAP) isoform overexpression suppresses MYO18B transcription but promotes transcription when the cells are treated with IFN-γ. Furthermore, miR-520G together with mutant-p53 promotes MYO18B transcription. Conversely, bFGF suppresses MYO18B mRNA irrespective of CEBPB, miR-520G overexpression or IFN-γ treatment. Finally high MYO18B expression reflects poor prognosis while high MYL5 or MYO1B expression reflects better survival of HCC patients. Thus, we identified a network of positive and negative regulators of MYO18B mRNA expression which reflects the survival of HCC patients.
Collapse
|
7
|
Jinesh GG, Brohl AS. The genetic script of metastasis. Biol Rev Camb Philos Soc 2020; 95:244-266. [PMID: 31663259 DOI: 10.1111/brv.12562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 01/24/2023]
Abstract
Metastasis is a pivotal event that changes the course of cancers from benign and treatable to malignant and difficult to treat, resulting in the demise of patients. Understanding the genetic control of metastasis is thus crucial to develop efficient and sustainable targeted therapies. Here we discuss the alterations in epigenetic mechanisms, transcription, chromosomal instability, chromosome imprinting, non-coding RNAs, coding RNAs, mutant RNAs, enhancers, G-quadruplexes, and copy number variation to dissect the genetic control of metastasis. We conclude that the genetic control of metastasis is predominantly executed through epithelial to mesenchymal transition and evasion of cell death. We discuss how genetic regulatory mechanisms can be harnessed for therapeutic purposes to achieve sustainable control over cancer metastasis.
Collapse
Affiliation(s)
- Goodwin G Jinesh
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A.,Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A
| | - Andrew S Brohl
- Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A.,Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A
| |
Collapse
|
8
|
Mitsiogianni M, Koutsidis G, Mavroudis N, Trafalis DT, Botaitis S, Franco R, Zoumpourlis V, Amery T, Galanis A, Pappa A, Panayiotidis MI. The Role of Isothiocyanates as Cancer Chemo-Preventive, Chemo-Therapeutic and Anti-Melanoma Agents. Antioxidants (Basel) 2019; 8:E106. [PMID: 31003534 PMCID: PMC6523696 DOI: 10.3390/antiox8040106] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/03/2019] [Accepted: 04/12/2019] [Indexed: 12/11/2022] Open
Abstract
Many studies have shown evidence in support of the beneficial effects of phytochemicals in preventing chronic diseases, including cancer. Among such phytochemicals, sulphur-containing compounds (e.g., isothiocyanates (ITCs)) have raised scientific interest by exerting unique chemo-preventive properties against cancer pathogenesis. ITCs are the major biologically active compounds capable of mediating the anticancer effect of cruciferous vegetables. Recently, many studies have shown that a higher intake of cruciferous vegetables is associated with reduced risk of developing various forms of cancers primarily due to a plurality of effects, including (i) metabolic activation and detoxification, (ii) inflammation, (iii) angiogenesis, (iv) metastasis and (v) regulation of the epigenetic machinery. In the context of human malignant melanoma, a number of studies suggest that ITCs can cause cell cycle growth arrest and also induce apoptosis in human malignant melanoma cells. On such basis, ITCs could serve as promising chemo-therapeutic agents that could be used in the clinical setting to potentiate the efficacy of existing therapies.
Collapse
Affiliation(s)
- Melina Mitsiogianni
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Georgios Koutsidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Nikos Mavroudis
- Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6AP, UK.
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Unit of Clinical Pharmacology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Sotiris Botaitis
- Second Department of Surgery, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Vasilis Zoumpourlis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece.
| | - Tom Amery
- The Watrercress Company / The Wasabi Company, Waddock, Dorchester, Dorset DT2 8QY, UK.
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Mihalis I Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
9
|
Kasiappan R, Jutooru I, Mohankumar K, Karki K, Lacey A, Safe S. Reactive Oxygen Species (ROS)-Inducing Triterpenoid Inhibits Rhabdomyosarcoma Cell and Tumor Growth through Targeting Sp Transcription Factors. Mol Cancer Res 2019; 17:794-805. [PMID: 30610105 DOI: 10.1158/1541-7786.mcr-18-1071] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/13/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022]
Abstract
Methyl 2-trifluoromethyl-3,11-dioxo-18β-olean-1,12-dien-3-oate (CF3DODA-Me) is derived synthetically from glycyrrhetinic acid, a major component of licorice, and this compound induced reactive oxygen species (ROS) in RD and Rh30 rhabdomyosarcoma (RMS) cells. CF3DODA-Me also inhibited growth and invasion and induced apoptosis in RMS cells, and these responses were attenuated after cotreatment with the antioxidant glutathione, demonstrating the effective anticancer activity of ROS in RMS. CF3DODA-Me also downregulated expression of specificity protein (Sp) transcription factors Sp1, Sp3, and Sp4 and prooncogenic Sp-regulated genes including PAX3-FOXO1 (in Rh30 cells). The mechanism of CF3DODA-Me-induced Sp-downregulation involved ROS-dependent repression of c-Myc and cMyc-regulated miR-27a and miR-17/20a, and this resulted in induction of the miRNA-regulated Sp repressors ZBTB4, ZBTB10, and ZBTB34. The cell and tumor growth effects of CF3DODA-Me further emphasize the sensitivity of RMS cells to ROS inducers and their potential clinical applications for treating this deadly disease. IMPLICATIONS: CF3DODA-Me and HDAC inhibitors that induce ROS-dependent Sp downregulation could be developed for clinical applications in treating rhabdomyosarcoma.
Collapse
Affiliation(s)
- Ravi Kasiappan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| | - Indira Jutooru
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Kumaravel Mohankumar
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Keshav Karki
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Alexandra Lacey
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas.
| |
Collapse
|
10
|
Safe S, Nair V, Karki K. Metformin-induced anticancer activities: recent insights. Biol Chem 2018; 399:321-335. [PMID: 29272251 DOI: 10.1515/hsz-2017-0271] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/11/2017] [Indexed: 12/12/2022]
Abstract
Metformin is a widely used antidiabetic drug, and there is evidence among diabetic patients that metformin is a chemopreventive agent against multiple cancers. There is also evidence in human studies that metformin is a cancer chemotherapeutic agent, and several clinical trials that use metformin alone or in combination with other drugs are ongoing. In vivo and in vitro cancer cell culture studies demonstrate that metformin induces both AMPK-dependent and AMPK-independent genes/pathways that result in inhibition of cancer cell growth and migration and induction of apoptosis. The effects of metformin in cancer cells resemble the patterns observed after treatment with drugs that downregulate specificity protein 1 (Sp1), Sp3 and Sp4 or by knockdown of Sp1, Sp3 and Sp4 by RNA interference. Studies in pancreatic cancer cells clearly demonstrate that metformin decreases expression of Sp1, Sp3, Sp4 and pro-oncogenic Sp-regulated genes, demonstrating that one of the underlying mechanisms of action of metformin as an anticancer agent involves targeting of Sp transcription factors. These observations are consistent with metformin-mediated effects on genes/pathways in many other tumor types.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Vijayalekshmi Nair
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Keshav Karki
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| |
Collapse
|
11
|
Chromosome 19 miRNA cluster and CEBPB expression specifically mark and potentially drive triple negative breast cancers. PLoS One 2018; 13:e0206008. [PMID: 30335837 PMCID: PMC6193703 DOI: 10.1371/journal.pone.0206008] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022] Open
Abstract
Triple negative breast cancers (TNBCs) are known to express low PGR, ESR1, and ERBB2, and high KRT5, KRT14, and KRT17. However, the reasons behind the increased expressions of KRT5, KRT14, KRT17 and decreased expressions of PGR, ESR1, and ERBB2 in TNBCs are not fully understood. Here we show that, expression of chromosome 19 miRNA cluster (C19MC) specifically marks human TNBCs. Low REST and high CEBPB correlate with expression of C19MC, KRT5, KRT14, and KRT17 and enhancers of these genes/cluster are regulated by CEBPB and REST binding sites. The C19MC miRNAs in turn can potentially target REST to offer a positive feedback loop, and might target PGR, ESR1, ERBB2, GATA3, SCUBE2, TFF3 mRNAs to contribute towards TNBC phenotype. Thus our study demonstrates that C19MC miRNA expression marks TNBCs and that C19MC miRNAs and CEBPB might together determine the TNBC marker expression pattern.
Collapse
|
12
|
Safe S, Abbruzzese J, Abdelrahim M, Hedrick E. Specificity Protein Transcription Factors and Cancer: Opportunities for Drug Development. Cancer Prev Res (Phila) 2018; 11:371-382. [PMID: 29545399 DOI: 10.1158/1940-6207.capr-17-0407] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/14/2018] [Accepted: 02/28/2018] [Indexed: 02/06/2023]
Abstract
Specificity protein (Sp) transcription factors (TFs) such as Sp1 are critical for early development but their expression decreases with age and there is evidence that transformation of normal cells to cancer cells is associated with upregulation of Sp1, Sp3, and Sp4, which are highly expressed in cancer cells and tumors. Sp1 is a negative prognostic factor for pancreatic, colon, glioma, gastric, breast, prostate, and lung cancer patients. Functional studies also demonstrate that Sp TFs regulate genes responsible for cancer cell growth, survival, migration/invasion, inflammation and drug resistance, and Sp1, Sp3 and Sp4 are also nononcogene addiction (NOA) genes and important drug targets. The mechanisms of drug-induced downregulation of Sp TFs and pro-oncogenic Sp-regulated genes are complex and include ROS-dependent epigenetic pathways that initially decrease expression of the oncogene cMyc. Many compounds such as curcumin, aspirin, and metformin that are active in cancer prevention also exhibit chemotherapeutic activity and these compounds downregulate Sp TFs in cancer cell lines and tumors. The effects of these compounds on downregulation of Sp TFs in normal cells and the contribution of this response to their chemopreventive activity have not yet been determined. Cancer Prev Res; 11(7); 371-82. ©2018 AACR.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas.
| | - James Abbruzzese
- Department of Medicine, Division of Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Maen Abdelrahim
- GI Medical Oncology, Cockrell Center for Advanced Therapeutics, Houston Methodist Cancer Center and Institute of Academic Medicine, Houston, Texas
| | - Erik Hedrick
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| |
Collapse
|
13
|
Salvador JA, Leal AS, Valdeira AS, Gonçalves BM, Alho DP, Figueiredo SA, Silvestre SM, Mendes VI. Oleanane-, ursane-, and quinone methide friedelane-type triterpenoid derivatives: Recent advances in cancer treatment. Eur J Med Chem 2017; 142:95-130. [DOI: 10.1016/j.ejmech.2017.07.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022]
|
14
|
Molecular genetics and cellular events of K-Ras-driven tumorigenesis. Oncogene 2017; 37:839-846. [PMID: 29059163 PMCID: PMC5817384 DOI: 10.1038/onc.2017.377] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/11/2017] [Accepted: 09/08/2017] [Indexed: 02/06/2023]
Abstract
Cellular transformation and the accumulation of genomic instability are the two key events required for tumorigenesis. K-Ras (Kirsten-rat sarcoma viral oncogene homolog) is a prominent oncogene that has been proven to drive tumorigenesis. K-Ras also modulates numerous genetic regulatory mechanisms and forms a large tumorigenesis network. In this review, we track the genetic aspects of K-Ras signaling networks and assemble the sequence of cellular events that constitute the tumorigenesis process, such as regulation of K-Ras expression (which is influenced by miRNA, small nucleolar RNA and lncRNA), activation of K-Ras (mutations), generation of reactive oxygen species (ROS), induction of DNA damage and apoptosis, induction of DNA damage repair pathways and ROS detoxification systems, cellular transformation after apoptosis by the blebbishield emergency program and the accumulation of genomic/chromosomal instability that leads to tumorigenesis.
Collapse
|
15
|
Jinesh GG, Kamat AM. The Blebbishield Emergency Program Overrides Chromosomal Instability and Phagocytosis Checkpoints in Cancer Stem Cells. Cancer Res 2017; 77:6144-6156. [PMID: 28855211 DOI: 10.1158/0008-5472.can-17-0522] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/13/2017] [Accepted: 08/22/2017] [Indexed: 11/16/2022]
Abstract
Genomic instability and immune evasion are hallmarks of cancer. Apoptotic cancer stem cells can evade cell death by undergoing cellular transformation by constructing "blebbishields" from apoptotic bodies. In this study, we report a novel linkage between genomic instability and phagocytosis evasion that is coordinated by the blebbishield emergency program. Blebbishield emergency program evaded genomic instability checkpoint, expressed genomic instability-associated genes at distinct phases of cellular transformation, exhibited chromosomal instability, and promoted increase in nuclear size. Blebbishields fused with immune cells to evade phagocytosis, and the resultant hybrid cells exhibited increased migration, tumorigenesis, metastasis, red blood cell recruitment to tumors, and induced hepatosplenomegaly with signatures of genomic instability, blebbishield emergency program, and phagocytosis evasion to offer poor prognosis. Overall, our data demonstrate that the blebbishield emergency program drives evasion of chromosomal instability and phagocytosis checkpoints by apoptotic cancer stem cells. Cancer Res; 77(22); 6144-56. ©2017 AACR.
Collapse
Affiliation(s)
- Goodwin G Jinesh
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Ashish M Kamat
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
16
|
Jinesh GG, Manyam GC, Mmeje CO, Baggerly KA, Kamat AM. Surface PD-L1, E-cadherin, CD24, and VEGFR2 as markers of epithelial cancer stem cells associated with rapid tumorigenesis. Sci Rep 2017; 7:9602. [PMID: 28851898 PMCID: PMC5575243 DOI: 10.1038/s41598-017-08796-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/13/2017] [Indexed: 12/17/2022] Open
Abstract
Cancer cells require both migratory and tumorigenic property to establish metastatic tumors outside the primary microenvironment. Identifying the characteristic features of migratory cancer stem cells with tumorigenic property is important to predict patient prognosis and combat metastasis. Here we established one epithelial and two mesenchymal cell lines from ascites of a bladder cancer patient (i.e. cells already migrated outside primary tumor). Analyses of these cell lines demonstrated that the epithelial cells with surface expression of PD-L1, E-cadherin, CD24, and VEGFR2 rapidly formed tumors outside the primary tumor microenvironment in nude mice, exhibited signatures of immune evasion, increased stemness, increased calcium signaling, transformation, and novel E-cadherin-RalBP1 interaction. The mesenchymal cells on the other hand, exhibited constitutive TGF-β signaling and were less tumorigenic. Hence, targeting epithelial cancer stem cells with rapid tumorigenesis signatures in future might help to combat metastasis.
Collapse
Affiliation(s)
- Goodwin G Jinesh
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Ganiraju C Manyam
- Department of Bioinformatics, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Chinedu O Mmeje
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Keith A Baggerly
- Department of Bioinformatics, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Ashish M Kamat
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA.
| |
Collapse
|
17
|
Li X, Ma M, Zhang X, Deng L, Wang Y, Bian Z, Cai S, Peng B, Yang J, Chen Y. Ethanol extract of gardenia fruit alleviates renal interstitial fibrosis induced by unilateral ureteral obstruction in rats. Exp Ther Med 2017; 14:1381-1388. [PMID: 28810600 PMCID: PMC5526097 DOI: 10.3892/etm.2017.4662] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 04/10/2017] [Indexed: 12/12/2022] Open
Abstract
Gardenia fruit has been used in traditional Chinese medicine for thousands of years. A previous study by the present authors indicated that the ethanol extract of gardenia fruits (EEG) primarily contains eight constituents. In the present study, the potential effects of EEG on unilateral ureteral obstruction (UUO)-induced renal interstitial fibrosis were observed in rats. A total of 30 rats were randomly divided into three groups (n=10 each): Sham group, UUO group, and EEG group, which were administered with EEG (200 mg/kg/day) or the same volume of distilled water as a vehicle. UUO were established by ligating left ureter at two points and cut between the ligatures. All rats were sacrificed at 14 days after UUO operation. the present results demonstrated that EEG significantly elevated the expressions of vascular endothelial growth factor and E-cadherin induced by UUO (both P<0.05), and reduced levels of hypoxia-inducible factor-1α, transforming growth factor-β1, connective tissue growth factor and α-smooth muscle actin (all P<0.05). The present findings suggest that EEG is a potential novel renoprotective compound for renal fibrosis through inhibiting epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Xiaobo Li
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China.,Department of Diagnostics, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, P.R. China
| | - Min Ma
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xianggui Zhang
- Department of Diagnostics, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, P.R. China
| | - Liang Deng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yarong Wang
- Department of Pharmaceutical Sciences, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, P.R. China
| | - Zhuang Bian
- Department of Gastroenterology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Shining Cai
- Department of Pharmaceutical Sciences, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, P.R. China
| | - Bangya Peng
- Department of Pharmaceutical Sciences, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, P.R. China
| | - Jiangquan Yang
- Department of Pharmaceutical Sciences, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, P.R. China
| | - Yang Chen
- Department of Pharmaceutical Sciences, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, P.R. China
| |
Collapse
|
18
|
RalBP1 and p19-VHL play an oncogenic role, and p30-VHL plays a tumor suppressor role during the blebbishield emergency program. Cell Death Discov 2017; 3:17023. [PMID: 28580172 PMCID: PMC5447132 DOI: 10.1038/cddiscovery.2017.23] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 03/28/2017] [Accepted: 04/04/2017] [Indexed: 01/10/2023] Open
Abstract
Cancer stem cells evade apoptotic death by blebbishield emergency program, which constructs blebbishields from apoptotic bodies and drives cellular transformation. Von Hippel-Lindau (VHL) plays both tumor suppressor and oncogenic roles, and the reason behind is poorly understood. Here we demonstrate that dimers and trimers of p19-VHL interact with RalBP1 to construct blebbishields. Expression of RalBP1, p19-VHL, and high-molecular weight VHL is required to evade apoptosis by blebbishield-mediated transformation. In contrast, p30-VHL plays a tumor suppressor role by inhibiting blebbishield-mediated transformation. Furthermore, target genes of VHL that suppress oxidative stress were elevated during blebbishield-mediated cellular transformation. Thus, RalBP1 and p19-VHL play an oncogenic role, whereas p30-VHL plays a tumor suppressor role during the blebbishield emergency program by regulating oxidative stress management genes.
Collapse
|