1
|
Nian C, Gan X, Liu Q, Wu Y, Kong M, Zhang P, Jin M, Dong Z, Li W, Wang L, He W, Li X, Wu J. Synthesis and Anti-gastric Cancer Activity by Targeting FGFR1 Pathway of Novel Asymmetric Bis-chalcone Compounds. Curr Med Chem 2024; 31:6521-6541. [PMID: 38847254 DOI: 10.2174/0109298673298420240530093525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/03/2024] [Accepted: 04/19/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Bis-chalcone compounds with symmetrical structures, either isolated from natural products or chemically synthesized, have multiple pharmacological activities. Asymmetric Bis-chalcone compounds have not been reported before, which might be attributed to the synthetic challenges involved, and it remains unknown whether these compounds possess any potential pharmacological activities. AIMS The aim of this study is to investigate the synthesis route of asymmetric bis-chalcone compounds and identify potential candidates with efficient anti-tumor activity. METHODS The two-step structural optimization of the bis-chalcone compounds was carried out sequentially, guided by the screening of the compounds for their growth inhibitory activity against gastric cancer cells by MTT assay. The QSAR model of compounds was established through random forest (RF) algorithm. The activities of the optimal compound J3 on growth inhibition, apoptosis, and apoptosis-inducing protein expression in gastric cancer cells were investigated sequentially by colony formation assay, flow cytometry, and western blotting. Further, the inhibitory effects of J3 on the FGFR1 signaling pathway were explored by Western Blotting, shRNA, and MTT assays. Finally, the in vivo anti-tumor activity and mechanism of J3 were studied through nude mice xenograft assay, western blotting. RESULTS 27 asymmetric bis-chalcone compounds, including two types (N and J) were sequentially designed and synthesized. Some N-class compounds have good inhibitory activity on the growth of gastric cancer cells. The vast majority of J-class compounds optimized on the basis of N3 exhibit excellent inhibitory activity on gastric cancer cell growth. We established a QSAR model (R2 = 0.851627) by applying random forest algorithms. The optimal compound J3, which had better activity, concentration-dependently inhibited the formation of gastric cancer cell colonies and led to cell apoptosis by inducing the expression of the pro-apoptotic protein cleaved PARP in a dose-dependent manner. J3 may exert anti-gastric cancer effects by inhibiting the activation of FGFR1/ERK pathway. Moreover, at a dose of 10 mg/kg/day, J3 inhibited tumor growth in nude mice by nearly 70% in vivo with no significant toxic effect on body weight and organs. CONCLUSION In summary, this study outlines a viable method for the synthesis of novel asymmetric bischalcone compounds. Furthermore, the compound J3 demonstrates substantial promise as a potential candidate for an anti-tumor drug.
Collapse
Affiliation(s)
- Chunhui Nian
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xin Gan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Department of Pharmacy, Ezhou Central Hospital, Ezhou, Hubei, 436000, China
| | - Qunpeng Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Yuna Wu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University; Wenzhou, 325027, China
| | - Miaomiao Kong
- The 1st affiliated hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Peiqin Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Mingming Jin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhaojun Dong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wulan Li
- The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Ledan Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Wenfei He
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Jianzhang Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University; Wenzhou, 325027, China
| |
Collapse
|
2
|
Abstract
The FGF receptors (FGFRs) belong to a family of receptor tyrosine kinases. Abundant evidence shows that FGFRs are closely related to tumor cell invasion and angiogenesis. Hence, targeted modulation of FGFRs has become an effective strategy for cancer treatment. Recently, the development of small-molecule inhibitors targeting FGFRs has been extensively studied, and three inhibitors have been approved for marketing. Based on the clinical problems with the current inhibitors, there is a need to develop novel inhibitors and technologies to address the pitfalls. This review summarizes recent advances in small-molecule inhibitors targeting FGFRs, focusing on structure-activity relationships. Moreover, recent progress of novel technologies are summarized to provide a reference for promoting the application of drugs targeting FGFRs in tumor therapy.
Collapse
|
3
|
Wei T, Zheng Z, Wei X, Liu Y, Li W, Fang B, Yun D, Dong Z, Yi B, Li W, Wu X, Chen D, Chen L, Wu J. Rational design, synthesis, and pharmacological characterisation of dicarbonyl curcuminoid analogues with improved stability against lung cancer via ROS and ER stress mediated cell apoptosis and pyroptosis. J Enzyme Inhib Med Chem 2022; 37:2357-2369. [PMID: 36039017 PMCID: PMC9448362 DOI: 10.1080/14756366.2022.2116015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
Curcumin is a natural medicine with a wide range of anti-tumour activities. However, due to β-diketone moiety, curcumin exhibits poor stability and pharmacokinetics which significantly limits its clinical applications. In this article, two types of dicarbonyl curcumin analogues with improved stability were designed through the calculation of molecular stability by density functional theory. Twenty compounds were synthesised, and their anti-tumour activity was screened. A plurality of analogues had significantly stronger activity than curcumin. In particular, compound B2 ((2E,2'E)-3,3'-(1,4-phenylene)bis(1-(2-chlorophenyl)prop-2-en-1-one)) exhibited excellent anti-lung cancer activity in vivo and in vitro. In addition, B2 could upregulate the level of reactive oxygen species in lung cancer cells, which in turn activated the endoplasmic reticulum stress and led to cell apoptosis and pyroptosis. Taken together, curcumin analogue B2 is expected to be a novel candidate for lung cancer treatment with improved chemical and biological characteristics.
Collapse
Affiliation(s)
- Tao Wei
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China
| | - Zhiwei Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyan Wei
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yugang Liu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wentao Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Bingqing Fang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, China
| | - Di Yun
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhaojun Dong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Baozhu Yi
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, China
| | - Wulan Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoping Wu
- MOE Key Laboratory of Tumor Molecular Biology, Guangdong, China
| | - Dezhi Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liping Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China
| | - Jianzhang Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China.,The Eye Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Xi D, Jia Q, Liu X, Zhang L, Xu B, Ma Z, Ma Y, Yu Y, Zhang F, Chen H. LAMC1 is a Novel Prognostic Factor and a Potential Therapeutic Target in Gastric Cancer. Int J Gen Med 2022; 15:3183-3198. [PMID: 35342300 PMCID: PMC8943981 DOI: 10.2147/ijgm.s353289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the role of LAMC1 in gastric cancer (GC), if it is of great importance to identify tumour driver genes with prognostic value. Patients and Methods GC-related gene expression profile data were downloaded from TCGA. R-limma package and univariate Cox regression were used to identify the differentially expressed genes (DEGs) and survival-genes, respectively. Then, the ClusterProfiler package was used to analyse the Gene Ontology and pathway enrichment of DEGs. Cytoscape was used to build a protein interaction network (PPI) and identify key genes. The GEPIA2 and TIMER databases were used to validate the differential expression of LAMC1. The relationship between LAMC1 and the prognosis of GC was analysed by the KM. GSEA and GSVA were used to analyse the major activated and mutated pathways, respectively. Real-time fluorescence quantitative PCR (RT-qPCR) was used to reidentify the expression of LAMC1 in GES-1 and 5 GC cell lines. Finally, we explored the relationship between LAMC1 and FGFR1. Results A total of 266 DEGs were be selected, which were mainly enriched in extracellular structure organization. LAMC1 was identified as one of the hub genes. The expression of LAMC1 was significantly higher in GC tissue than in paracancerous tissues, and the prognosis of the GC patient with high expression of LAMC1 was relatively poor. Univariate and multivariate Cox analysis indicated that LAMC1 could be used as an independent prognostic indicator. The results of GSEA and GSVA showed that LAMC1 was mainly enriched in pathways such as MYOGENESIS and UV_RESPONSE_DN. The RT-qPCR results showed that the expression level in AGS cells was significantly higher than that in gastric epithelial cells. LAMC1 may play a role in the development of gastric cancer by influencing FGFR1. Conclusion LAMC1 may mediate the occurrence and development of GC and has potential as a biomarker for the prognosis and treatment of GC.
Collapse
Affiliation(s)
- Dayong Xi
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
- Department of Gastroenterology, The Second Provincial People’s Hospital of Gansu, Lanzhou, Gansu, People’s Republic of China
| | - Qiufang Jia
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - XiaoLong Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Bo Xu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Zhen Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - YanLing Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Yang Yu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Fan Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Hao Chen
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu, People’s Republic of China
- Correspondence: Hao Chen, Department of Surgical Oncology, Lanzhou University Second Hospital, No. 82, Cuiyingmen, Chengguan District, Lanzhou, Gansu, People’s Republic of China, Tel +86 15009467790, Fax +86 931-8458109, Email
| |
Collapse
|
5
|
Peng R, Chen Y, Wei L, Li G, Feng D, Liu S, Jiang R, Zheng S, Chen Y. Resistance to FGFR1-targeted therapy leads to autophagy via TAK1/AMPK activation in gastric cancer. Gastric Cancer 2020; 23:988-1002. [PMID: 32617693 DOI: 10.1007/s10120-020-01088-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Fibroblast growth factor receptor 1 (FGFR1) is frequently dysregulated in various tumors. FGFR inhibitors have shown promising therapeutic value in several preclinical models. However, tumors resistant to FGFR inhibitors have emerged, compromising therapeutic outcomes by demonstrating markedly aggressive metastatic progression; however, the underlying signaling mechanism of resistance remains unknown. METHODS We established FGFR inhibitor-resistant cell models using two gastric cancer (GC) cell lines, MGC-803 and BGC-823. RNA-seq was performed to determine the continuous cellular transcriptome changes between parental and resistant cells. We explored the mechanism of resistance to FGFR inhibitor, using a subcutaneous tumor model and GC patient-derived tumor organotypic culture. RESULTS We observed that FGFR1 was highly expressed in GC and FGFR1 inhibitor-resistant cell lines, demonstrating elevated levels of autophagic activity. These resistant cells were characterized by epithelial-mesenchymal transition (EMT) required to facilitate metastatic outgrowth. In drug-resistant cells, the FGFR1 inhibitor regulated GC cell autophagy via AMPK/mTOR signal activation, which could be blocked using either pharmacological inhibitors or essential gene knockdown. Furthermore, TGF-β-activated kinase 1 (TAK1) amplification and metabolic restrictions led to AMPK pathway activation and autophagy. In vitro and in vivo results demonstrated that the FGFR inhibitor AZD4547 and TAK1 inhibitor NG25 synergistically inhibited proliferation and autophagy in AZD4547-resistant cell lines and patient-derived GC organotypic cultures. CONCLUSIONS We elucidated the molecular mechanisms underlying primary resistance to FGFR1 inhibitors in GC, and revealed that the inhibition of FGFR1 and TAK1 signaling could present a potential novel therapeutic strategy for FGFR1 inhibitor-resistant GC patients.
Collapse
Affiliation(s)
- Rui Peng
- Department of General Surgery, Research Center for Clinical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, 210009, Jiangsu, China
| | - Yan Chen
- Key Laboratory of Emergency and Trauma of Ministry of Education, Tumor Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, 571199, China
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, China
| | - Liangnian Wei
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Gang Li
- Department of General Surgery, Research Center for Clinical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, 210009, Jiangsu, China
| | - Dongju Feng
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Siru Liu
- Key Laboratory of Emergency and Trauma of Ministry of Education, Tumor Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, 571199, China
| | - Runqiu Jiang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210093, Jiangsu, China.
| | - Shaojiang Zheng
- Key Laboratory of Emergency and Trauma of Ministry of Education, Tumor Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, 571199, China.
| | - Yun Chen
- Department of General Surgery, Research Center for Clinical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, 210009, Jiangsu, China.
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
6
|
Chen Q, Zhu M, Xie J, Dong Z, Khushafah F, Yun D, Fu W, Wang L, Wei T, Liu Z, Qiu P, Wu J, Li W. Design and Synthesis of Novel Nordihydroguaiaretic Acid (NDGA) Analogues as Potential FGFR1 Kinase Inhibitors With Anti-Gastric Activity and Chemosensitizing Effect. Front Pharmacol 2020; 11:518068. [PMID: 33041789 PMCID: PMC7517944 DOI: 10.3389/fphar.2020.518068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 08/13/2020] [Indexed: 12/31/2022] Open
Abstract
Aberrant fibroblast growth factor receptor-1 (FGFR1), a key driver promoting gastric cancer (GC) progression and chemo-resistance, has been increasingly recognized as a potential therapeutic target in GC. Hereon, we designed and synthesized a series of asymmetric analogues using Af23 and NDGA as lead compounds by retaining the basic structural framework (bisaryl-1,4-dien-3-one) and the unilateral active functional groups (3,4-dihydroxyl). Thereinto, Y14 showed considerable inhibitory activity against FGFR1. Next, pharmacological experiments showed that Y14 could significantly inhibit the phosphorylation of FGFR1 and its downstream kinase AKT and ERK, thus inhibiting the growth, survival, and migration of gastric cancer cells. Furthermore, compared with 5-FU treatment alone, the combination of Y14 and 5-FU significantly reduced the phosphorylation level of FGFR1, and enhanced the anti-cancer effect by inhibiting the viability and colony formation in two gastric cancer cell lines. These results confirmed that Y14 exerted anti-gastric activity and chemosensitizing effect by inhibiting FGFR1 phosphorylation and its downstream signaling pathway in vitro. This work also provides evidence that Y14, an effective FGFR1 inhibitor, could be used alone or in combination with chemotherapy to treat gastric cancer in the future.
Collapse
Affiliation(s)
- Qian Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Min Zhu
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jingwen Xie
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhaojun Dong
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fatehi Khushafah
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Di Yun
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weitao Fu
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ledan Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tao Wei
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhiguo Liu
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Peihong Qiu
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianzhang Wu
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wulan Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Guo W, Zhao L, Wei G, Liu P, Zhang Y, Fu L. Circ_0015756 Aggravates Hepatocellular Carcinoma Development by Regulating FGFR1 via Sponging miR-610. Cancer Manag Res 2020; 12:7383-7394. [PMID: 32884351 PMCID: PMC7443463 DOI: 10.2147/cmar.s262231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the leading threat of cancer-related death in humans. Increasing studies show that circular RNAs (circRNAs) are important indicators in cancer diagnosis and prognosis. This study intended to explore the function and mechanism of circ_0015756 in HCC, providing the additional opinion for HCC treatment. Materials and Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized to detect the expression of circ_0015756 and miR-610. Cell viability was assessed by cell counting kit-8 (CCK-8) assay, and colony formation capacity was ascertained by colony formation assay. Cell migration and invasion were monitored by transwell assay. Cell cycle progression and apoptosis were analyzed by flow cytometry assay. Circ_0015756 oncogenicity was determined by Xenograft models. The targets of circ_0015756 and miR-610 were predicted by bioinformatics tools and validated using RNA pull-down, RNA immunoprecipitation (RIP) and dual-luciferase reporter assays. The expression level of fibroblast growth factor receptor 1 (FGFR1) was measured by Western blot. Results The expression of circ_0015756 was increased in HCC tissues, serums and cells. Circ_0015756 downregulation impaired HCC cell viability, colony formation capacity, invasion and migration, induced cell cycle arrest and apoptosis, and inhibited tumor growth in vivo. MiR-610 was ensured as a target of circ_0015756, and miR-610 absence reversed the effects of circ_0015756 downregulation. Further, FGFR1 was targeted by miR-610, and FGFR1 overexpression overturned the effects of miR-610 restoration in HCC cells. Circ_0015756 could regulate FGFR1 expression by targeting miR-610. Conclusion Circ_0015756 played its tumorigenic properties in HCC by activating FGFR1 via sponging miR-610, and circ_0015756 was expected to be a vital indicator in HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Weisheng Guo
- Department of Hepatobiliary Surgery, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450002, People's Republic of China
| | - Lin Zhao
- Department of Hepatobiliary Surgery, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450002, People's Republic of China
| | - Guangya Wei
- Department of Hepatobiliary Surgery, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450002, People's Republic of China
| | - Peng Liu
- Department of Hepatobiliary Surgery, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450002, People's Republic of China
| | - Yu Zhang
- Department of Hepatobiliary Surgery, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450002, People's Republic of China
| | - Liran Fu
- Department of Traditional Chinese Medicine, People's Hospital of Zhengzhou, Zhengzhou, Henan 450000, People's Republic of China
| |
Collapse
|
8
|
Xie G, Ke Q, Ji YZ, Wang AQ, Jing M, Zou LL. FGFR1 is an independent prognostic factor and can be regulated by miR-497 in gastric cancer progression. ACTA ACUST UNITED AC 2018; 52:e7816. [PMID: 30484492 PMCID: PMC6262748 DOI: 10.1590/1414-431x20187816] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/21/2018] [Indexed: 12/15/2022]
Abstract
Fibroblast growth factor receptor 1 (FGFR1) has been reported in gastric cancer to be a prognostic factor. However, miR-497-targeted FGFR1 has not been explored in the carcinogenesis of gastric cancer. The present study intended to revalidate the prognostic significance of FGFR1 in patients with gastric cancer, and the mechanism of miR-497-regulated FGFR1 was investigated in gastric cancer cell proliferation and apoptosis. The messenger RNA (mRNA) and protein levels were assayed by RT-qPCR and western blotting, respectively. The targeted genes were predicted by a bioinformatics algorithm and confirmed by a dual luciferase reporter assay. Cell proliferation was analyzed by CCK-8 assay. Annexin V-FITC/PI staining was used to evaluate the apoptosis in AGS and SGC-7901 cells. FGFR1 was frequently up-regulated in gastric cancer tissues and associated with poor overall survival in patients with gastric cancer. Interestingly, FGFR1 loss-of-function resulted in a significant growth inhibition and apoptosis in AGS and SGC-7901 cells. In addition, we found that miR-497 was inhibited in gastric cancer tissues and cell lines, while overexpression of miR-497 could suppress proliferation and induce apoptosis in AGS and SGC-7901 cells. Importantly, bioinformatics analysis and experimental data suggested that FGFR1 was a direct target of miR-497, which could inhibit FGFR1 expression when transfected with miR-497 mimics. Furthermore, we found that overexpression of FGFR1 reversed the growth inhibition and apoptosis of miR-497 mimics in AGS and SGC-7901 cells. These findings suggested that overexpression of miR-497 inhibited proliferation and induced apoptosis in gastric cancer through the suppression of FGFR1.
Collapse
Affiliation(s)
- Gang Xie
- Department of Pathology, Mianyang Central Hospital, Mianyang, Sichuan Province, China
| | - Qi Ke
- Department of Pathology, Mianyang Central Hospital, Mianyang, Sichuan Province, China
| | - Yu Zu Ji
- Department of Pathology, Mianyang Central Hospital, Mianyang, Sichuan Province, China
| | - An-Qun Wang
- Department of Pathology, Mianyang Central Hospital, Mianyang, Sichuan Province, China
| | - Meng Jing
- Department of Pathology, Mianyang Central Hospital, Mianyang, Sichuan Province, China
| | - Li-Li Zou
- Department of Pathology, Mianyang Central Hospital, Mianyang, Sichuan Province, China
| |
Collapse
|
9
|
Shimizu D, Saito T, Ito S, Masuda T, Kurashige J, Kuroda Y, Eguchi H, Kodera Y, Mimori K. Overexpression of FGFR1 Promotes Peritoneal Dissemination Via Epithelial-to-Mesenchymal Transition in Gastric Cancer. Cancer Genomics Proteomics 2018; 15:313-320. [PMID: 29976636 DOI: 10.21873/cgp.20089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Peritoneal dissemination (PD) is one of the most common causes of cancer-related mortality in gastric cancer (GC). We aimed to identify PD-associated genes and investigate their role in GC. MATERIALS AND METHODS We identified FGFR1 as a putative PD-associated gene using a bioinformatics approach. The biological significance of FGFR1 in epithelial-to-mesenchymal transition (EMT) was evaluated according to the correlation with genes that participated in EMT and FGFR1 knockdown experiments. The associations between FGFR1 expression and the clinicopathological features were examined. RESULTS FGFR1 expression positively correlated with SNAI1, VIM and ZEB1 expression, and negatively correlated with CDH1 expression. Knockdown of FGFR1 suppressed the malignant phenotype of GC cells. High FGFR1 expression significantly correlated with the peritoneal lavage cytology and synchronous PD positivity as well as poor prognosis. CONCLUSION High FGFR1 expression was associated with PD via promotion of EMT and led to a poor prognosis of GC patients.
Collapse
Affiliation(s)
- Dai Shimizu
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara, Japan.,Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoko Saito
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara, Japan
| | - Shuhei Ito
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara, Japan
| | - Junji Kurashige
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara, Japan.,Department of Surgery, National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan
| | - Yosuke Kuroda
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara, Japan
| | - Hidetoshi Eguchi
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara, Japan
| |
Collapse
|
10
|
Hu P, Chen H, McGowan EM, Ren N, Xu M, Lin Y. Assessment of FGFR1 Over-Expression and Over-Activity in Lung Cancer Cells: A Toolkit for Anti-FGFR1 Drug Screening. Hum Gene Ther Methods 2018; 29:30-43. [PMID: 29281903 DOI: 10.1089/hgtb.2017.104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Penghui Hu
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hongjie Chen
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Eileen M McGowan
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Nina Ren
- Guangdong Online Hospital Clinic, Guangdong 2nd Provincial People's Hospital, Guangzhou, China
| | - Meng Xu
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yiguang Lin
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
| |
Collapse
|