1
|
Alves Â, Medeiros R, Teixeira AL, Dias F. Decoding PTEN regulation in clear cell renal cell carcinoma: Pathway for biomarker discovery and therapeutic insights. Biochim Biophys Acta Rev Cancer 2024; 1879:189165. [PMID: 39117092 DOI: 10.1016/j.bbcan.2024.189165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Renal cell carcinoma is the most common adult renal solid tumor and the deadliest urological cancer, with clear cell renal cell carcinoma (ccRCC) being the predominant subtype. The PI3K/AKT signaling pathway assumes a central role in ccRCC tumorigenesis, wherein its abnormal activation confers a highly aggressive phenotype, leading to swift resistance against current therapies and distant metastasis. Thus, treatment resistance and disease progression remain a persistent clinical challenge in managing ccRCC effectively. PTEN, an antagonist of the PI3K/AKT signaling axis, emerges as a crucial factor in tumor progression, often experiencing loss or inactivation in ccRCC, thereby contributing to elevated mortality rates in patients. Therefore, understanding the molecular mechanisms underlying PTEN suppression in ccRCC tumors holds promise for the discovery of biomarkers and therapeutic targets, ultimately enhancing patient monitoring and treatment outcomes. The present review aims to summarize these mechanisms, emphasizing their potential prognostic, predictive, and therapeutic value in managing ccRCC.
Collapse
Affiliation(s)
- Ângela Alves
- Molecular Oncology and Viral Pathology Group, Research Center of IPO-Porto (CI-IPOP) &RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-513 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO-Porto (CI-IPOP) &RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-513 Porto, Portugal; Faculty of Medicine (FMUP), University of Porto, 4200-319 Porto, Portugal; Laboratory Medicine, Clinical Pathology Department, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal; Biomedicine Research Center (CEBIMED), Research Innovation and Development Institute (FP-I3ID), Faculty of Health Sciences, Fernando Pessoa University (UFP), 4249-004 Porto, Portugal; Research Department, Portuguese League Against Cancer Northern Branch (LPCC-NRN), 4200-172 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO-Porto (CI-IPOP) &RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, Research Center of IPO-Porto (CI-IPOP) &RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal.
| |
Collapse
|
2
|
Catalán-Castorena O, Garibay-Cerdenares OL, Illades-Aguiar B, Castillo-Sánchez R, Zubillaga-Guerrero MI, Leyva-Vazquez MA, Encarnacion-Guevara S, Flores-Alfaro E, Ramirez-Ruano M, del Carmen Alarcón-Romero L. Bioinformatics Analysis of Human Papillomavirus 16 Integration in Cervical Cancer: Changes in MAGI-1 Expression in Premalignant Lesions and Invasive Carcinoma. Cancers (Basel) 2024; 16:2225. [PMID: 38927930 PMCID: PMC11202195 DOI: 10.3390/cancers16122225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
HPV 16 integration is crucial for the onset and progression of premalignant lesions to invasive squamous cell carcinoma (ISCC) because it promotes the amplification of proto-oncogenes and the silencing of tumor suppressor genes; some of these are proteins with PDZ domains involved in homeostasis and cell polarity. Through a bioinformatics approach based on interaction networks, a group of proteins associated with HPV 16 infection, PDZ domains, and direct physical interaction with E6 and related to different hallmarks of cancer were identified. MAGI-1 was selected to evaluate the expression profile and subcellular localization changes in premalignant lesions and ISCC with HPV 16 in an integrated state in cervical cytology; the profile expression of MAGI-1 diminished according to lesion grade. Surprisingly, in cell lines CaSki and SiHa, the protein localization was cytoplasmic and nuclear. In contrast, in histological samples, a change in subcellular localization from the cytoplasm in low-grade squamous intraepithelial lesions (LSIL) to the nucleus in the high-grade squamous intraepithelial lesion (HSIL) was observed; in in situ carcinomas and ISCC, MAGI-1 expression was absent. In conclusion, MAGI-1 expression could be a potential biomarker for distinguishing those cells with normal morphology but with HPV 16 integrated from those showing morphology-related uterine cervical lesions associated with tumor progression.
Collapse
Affiliation(s)
- Oscar Catalán-Castorena
- Cytopathology and Histochemistry Research Laboratory, Faculty of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico; (O.C.-C.); (M.I.Z.-G.)
| | - Olga Lilia Garibay-Cerdenares
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico; (B.I.-A.); (M.A.L.-V.)
- CONAHCyT-Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico
| | - Berenice Illades-Aguiar
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico; (B.I.-A.); (M.A.L.-V.)
| | - Rocio Castillo-Sánchez
- Cell Biology Department, CINVESTAV-IPN Research Institute, Ciudad de México 07360, Mexico;
| | - Ma. Isabel Zubillaga-Guerrero
- Cytopathology and Histochemistry Research Laboratory, Faculty of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico; (O.C.-C.); (M.I.Z.-G.)
| | - Marco Antonio Leyva-Vazquez
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico; (B.I.-A.); (M.A.L.-V.)
| | - Sergio Encarnacion-Guevara
- Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca 62210, Morelos, Mexico;
| | - Eugenia Flores-Alfaro
- Clinical and Molecular Epidemiology Research Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico;
| | - Mónica Ramirez-Ruano
- Functional Genomics and Proteomics Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico;
| | - Luz del Carmen Alarcón-Romero
- Cytopathology and Histochemistry Research Laboratory, Faculty of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico; (O.C.-C.); (M.I.Z.-G.)
| |
Collapse
|
3
|
Excoffon KJDA, Avila CL, Alghamri MS, Kolawole AO. The magic of MAGI-1: A scaffolding protein with multi signalosomes and functional plasticity. Biol Cell 2022; 114:185-198. [PMID: 35389514 DOI: 10.1111/boc.202200014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022]
Abstract
MAGI-1 is a critical cellular scaffolding protein with over 110 different cellular and microbial protein interactors. Since the discovery of MAGI-1 in 1997, MAGI-1 has been implicated in diverse cellular functions such as polarity, cell-cell communication, neurological processes, kidney function, and a host of diseases including cancer and microbial infection. Additionally, MAGI-1 has undergone nomenclature changes in response to the discovery of an additional PDZ domain, leading to lack of continuity in the literature. We address the nomenclature of MAGI-1 as well as summarize many of the critical functions of the known interactions. Given the importance of many of the interactors, such as human papillomavirus E6, the Coxsackievirus and adenovirus receptor (CAR), and PTEN, the enhancement or disruption of MAGI-based interactions has the potential to affect cellular functions that can potentially be harnessed as a therapeutic strategy for a variety of diseases.
Collapse
Affiliation(s)
| | - Christina L Avila
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Mahmoud S Alghamri
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Abimbola O Kolawole
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| |
Collapse
|
4
|
Hu D, Shao W, Liu L, Wang Y, Yuan S, Liu Z, Liu J, Zhang J. Intricate crosstalk between MYB and noncoding RNAs in cancer. Cancer Cell Int 2021; 21:653. [PMID: 34876130 PMCID: PMC8650324 DOI: 10.1186/s12935-021-02362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/24/2021] [Indexed: 11/10/2022] Open
Abstract
MYB is often overexpressed in malignant tumors and plays a carcinogenic role in the initiation and development of cancer. Deletion of the MYB regulatory C-terminal domain may be a driving mutation leading to tumorigenesis, therefore, different tumor mechanisms produce similar MYB proteins. As MYB is a transcription factor, priority has been given to identifying the genes that it regulates. All previous attention has been focused on protein-coding genes. However, an increasing number of studies have suggested that MYB can affect the complexity of cancer progression by regulating tumor-associated noncoding RNAs (ncRNAs), such as microRNAs, long-non-coding RNAs and circular RNAs. ncRNAs can regulate the expression of numerous downstream genes at the transcription, RNA processing and translation levels, thereby having various biological functions. Additionally, ncRNAs play important roles in regulating MYB expression. This review focuses on the intricate crosstalk between oncogenic MYB and ncRNAs, which play a pivotal role in tumorigenesis, including proliferation, apoptosis, angiogenesis, metastasis, senescence and drug resistance. In addition, we discuss therapeutic strategies for crosstalk between MYB and ncRNAs to prevent the occurrence and development of cancer.
Collapse
Affiliation(s)
- Dingyu Hu
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Wenjun Shao
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Li Liu
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yanyan Wang
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Shunling Yuan
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhaoping Liu
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jing Liu
- Hunan Province Key Laboratory of Basic and Applied Hematology, Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| | - Ji Zhang
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China. .,Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, Guangdong, China.
| |
Collapse
|
5
|
Liu F, Zhang X, Wu F, Peng H. Hsa_circ_0088212-mediated miR-520 h/APOA1 axis inhibits osteosarcoma progression. Transl Oncol 2021; 14:101219. [PMID: 34555726 PMCID: PMC8461379 DOI: 10.1016/j.tranon.2021.101219] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/27/2021] [Accepted: 09/07/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND It has been known for decades that circRNAs are deregulated in cancer. Here, we characterized the role and underlying mechanism of circ_0088212 in osteosarcoma. METHODS The expression levels of circ_0088212, miR-520 h, and APOA1 were determined by RT-qPCR. RNase R digestion was performed to verify the circular structure of circ_0088212. CCK8 and transwell invasion assays were conducted to examine the in vitro malignancy of osteosarcoma. Caspase-3 activity was also measured. An in vivo model of osteosarcoma was constructed to examine the in vivo effect of circ_0088212 on osteosarcoma. Luciferase reporter, RNA RIP, and RNA pull-down assays were performed to verify the interaction between miR-520 h and APOA1 or circ_0088212. RESULTS Circ_0088212 and APOA1 were expressed at low levels in osteosarcoma tissues and cells, while miR-520 h was highly expressed. Overexpression of circ_0088212 was found to inhibit the in vitro and in vivo growth of osteosarcoma. Mechanistically, miR-520 h was the target of circ_0088212 and APOA1 was the target of miR-520 h. Circ_0088212 downregulated miR-520 h expression, while miR-520 h overexpression abolished the inhibitory effect of circ_0088212 on osteosarcoma cell proliferation and migration. Furthermore, miR-520 h overexpression led to reduced APOA1 expression, while APOA1 overexpression counteracted the oncogenic effect of miR-520 h in osteosarcoma cells. CONCLUSION Our findings demonstrated that circ_0088212 might exert a tumor-suppressive activity in osteosarcoma by sponging and sequestering miR-520 h away from APOA1. This suggests that the circ_0088212/miR-520 h/APOA1 axis may be a promising therapeutic target for osteosarcoma intervention.
Collapse
Affiliation(s)
- Feng Liu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Xiangyang Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Fei Wu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Hao Peng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China.
| |
Collapse
|
6
|
Kotelevets L, Chastre E. A New Story of the Three Magi: Scaffolding Proteins and lncRNA Suppressors of Cancer. Cancers (Basel) 2021; 13:4264. [PMID: 34503076 PMCID: PMC8428372 DOI: 10.3390/cancers13174264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/16/2022] Open
Abstract
Scaffolding molecules exert a critical role in orchestrating cellular response through the spatiotemporal assembly of effector proteins as signalosomes. By increasing the efficiency and selectivity of intracellular signaling, these molecules can exert (anti/pro)oncogenic activities. As an archetype of scaffolding proteins with tumor suppressor property, the present review focuses on MAGI1, 2, and 3 (membrane-associated guanylate kinase inverted), a subgroup of the MAGUK protein family, that mediate networks involving receptors, junctional complexes, signaling molecules, and the cytoskeleton. MAGI1, 2, and 3 are comprised of 6 PDZ domains, 2 WW domains, and 1 GUK domain. These 9 protein binding modules allow selective interactions with a wide range of effectors, including the PTEN tumor suppressor, the β-catenin and YAP1 proto-oncogenes, and the regulation of the PI3K/AKT, the Wnt, and the Hippo signaling pathways. The frequent downmodulation of MAGIs in various human malignancies makes these scaffolding molecules and their ligands putative therapeutic targets. Interestingly, MAGI1 and MAGI2 genetic loci generate a series of long non-coding RNAs that act as a tumor promoter or suppressor in a tissue-dependent manner, by selectively sponging some miRNAs or by regulating epigenetic processes. Here, we discuss the different paths followed by the three MAGIs to control carcinogenesis.
Collapse
Affiliation(s)
- Larissa Kotelevets
- Sorbonne Université, INSERM, UMR_S938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| | - Eric Chastre
- Sorbonne Université, INSERM, UMR_S938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| |
Collapse
|
7
|
MAGI1, a Scaffold Protein with Tumor Suppressive and Vascular Functions. Cells 2021; 10:cells10061494. [PMID: 34198584 PMCID: PMC8231924 DOI: 10.3390/cells10061494] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
MAGI1 is a cytoplasmic scaffolding protein initially identified as a component of cell-to-cell contacts stabilizing cadherin-mediated cell–cell adhesion in epithelial and endothelial cells. Clinical-pathological and experimental evidence indicates that MAGI1 expression is decreased in some inflammatory diseases, and also in several cancers, including hepatocellular carcinoma, colorectal, cervical, breast, brain, and gastric cancers and appears to act as a tumor suppressor, modulating the activity of oncogenic pathways such as the PI3K/AKT and the Wnt/β-catenin pathways. Genomic mutations and other mechanisms such as mechanical stress or inflammation have been described to regulate MAGI1 expression. Intriguingly, in breast and colorectal cancers, MAGI1 expression is induced by non-steroidal anti-inflammatory drugs (NSAIDs), suggesting a role in mediating the tumor suppressive activity of NSAIDs. More recently, MAGI1 was found to localize at mature focal adhesion and to regulate integrin-mediated adhesion and signaling in endothelial cells. Here, we review MAGI1′s role as scaffolding protein, recent developments in the understanding of MAGI1 function as tumor suppressor gene, its role in endothelial cells and its implication in cancer and vascular biology. We also discuss outstanding questions about its regulation and potential translational implications in oncology.
Collapse
|
8
|
Ravi N, Yang M, Mylona N, Wennerberg J, Paulsson K. Global RNA Expression and DNA Methylation Patterns in Primary Anaplastic Thyroid Cancer. Cancers (Basel) 2020; 12:cancers12030680. [PMID: 32183222 PMCID: PMC7140095 DOI: 10.3390/cancers12030680] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/27/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) is one of the most malignant tumors, with a median survival of only a few months. The tumorigenic processes of this disease have not yet been completely unraveled. Here, we report an mRNA expression and DNA methylation analysis of fourteen primary ATCs. ATCs clustered separately from normal thyroid tissue in unsupervised analyses, both by RNA expression and by DNA methylation. In expression analysis, enrichment of cell-cycle-related genes as well as downregulation of genes related to thyroid function were seen. Furthermore, ATC displayed a global hypomethylation of the genome but with hypermethylation of CpG islands. Notably, several cancer-related genes displayed a correlation between RNA expression and DNA methylation status, including MTOR, NOTCH1, and MAGI1. Furthermore, TSHR and SLC26A7, encoding the thyroid-stimulating hormone receptor and an iodine receptor highly expressed in normal thyroid, respectively, displayed low expression as well as aberrant gene body DNA methylation. This study is the largest investigation of global DNA methylation in ATC to date. It shows that aberrant DNA methylation is common in ATC and likely contributes to tumorigenesis in this disease. Future explorations of novel treatments should take this into consideration.
Collapse
Affiliation(s)
- Naveen Ravi
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, SE-221 85 Lund, Sweden; (N.R.); (M.Y.)
| | - Minjun Yang
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, SE-221 85 Lund, Sweden; (N.R.); (M.Y.)
| | - Nektaria Mylona
- Division of Oncology and Pathology, Clinical Sciences, Lund University and Skåne University Hospital, SE-221 85 Lund, Sweden;
| | - Johan Wennerberg
- Division of Otorhinolaryngology/Head and Neck Surgery, Clinical Sciences, Lund University and Skåne University Hospital, SE-221 85 Lund, Sweden;
| | - Kajsa Paulsson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, SE-221 85 Lund, Sweden; (N.R.); (M.Y.)
- Correspondence: ; Tel.: +46-46-222-69-95
| |
Collapse
|
9
|
Li ZY, Li XH, Tian GW, Zhang DY, Gao H, Wang ZY. MAGI1 Inhibits the Proliferation, Migration and Invasion of Glioma Cells. Onco Targets Ther 2019; 12:11281-11290. [PMID: 31908493 PMCID: PMC6927608 DOI: 10.2147/ott.s230236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/05/2019] [Indexed: 11/29/2022] Open
Abstract
Background Membrane-associated guanylate kinase inverted repeat member 1 (MAGI1) acts as a tumor suppressor in a variety of tumors; however, its expression and biological function in glioma are still unknown. Methods MAGI1 expression in glioma was examined by immunohistochemistry. In addition, overexpression of MAGI1 in U87 and U373 cells, colony formation and MTT assays were used to evaluate cell proliferation, Transwell assays to determine cell migration and invasion, and a xenograft model established using U87 cells to evaluate the effect of MAGI1 overexpression in vivo. Western blot assays were used to analyze the Akt, MMP2, MMP9 and E-cadherin/N-cadherin/vimentin pathway changes after overexpression of MAGI1. Results We demonstrated that MAGI1 was expressed at low levels in glioma. Low MAGI1 expression was positively correlated with the malignant progression of glioma and indicated a poor prognosis. Moreover, we found that overexpressed MAGI1 inhibited the proliferation, migration and invasion of glioma cells by regulating cell growth and EMT through Akt, MMP2, MMP9 and the E-cadherin/N-cadherin/vimentin pathway. Conclusion These findings demonstrate a novel function of MAGI1 in glioma progression and suggest that MAGI1 might be a target for the diagnosis and treatment of glioma.
Collapse
Affiliation(s)
- Zhong-Yan Li
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China.,Department of Neurosurgery, Fuxin Central Hospital, Fuxin, People's Republic of China
| | - Xue-Hua Li
- Department of Neurosurgery, Fuxin Central Hospital, Fuxin, People's Republic of China
| | - Guang-Wei Tian
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Dong-Yong Zhang
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Hai Gao
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Zhen-Yu Wang
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|