1
|
Bunch H, Kim D, Naganuma M, Nakagawa R, Cong A, Jeong J, Ehara H, Vu H, Chang JH, Schellenberg MJ, Sekine SI. ERK2-topoisomerase II regulatory axis is important for gene activation in immediate early genes. Nat Commun 2023; 14:8341. [PMID: 38097570 PMCID: PMC10721843 DOI: 10.1038/s41467-023-44089-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
The function of the mitogen-activated protein kinase signaling pathway is required for the activation of immediate early genes (IEGs), including EGR1 and FOS, for cell growth and proliferation. Recent studies have identified topoisomerase II (TOP2) as one of the important regulators of the transcriptional activation of IEGs. However, the mechanism underlying transcriptional regulation involving TOP2 in IEG activation has remained unknown. Here, we demonstrate that ERK2, but not ERK1, is important for IEG transcriptional activation and report a critical ELK1 binding sequence for ERK2 function at the EGR1 gene. Our data indicate that both ERK1 and ERK2 extensively phosphorylate the C-terminal domain of TOP2B at mutual and distinctive residues. Although both ERK1 and ERK2 enhance the catalytic rate of TOP2B required to relax positive DNA supercoiling, ERK2 delays TOP2B catalysis of negative DNA supercoiling. In addition, ERK1 may relax DNA supercoiling by itself. ERK2 catalytic inhibition or knock-down interferes with transcription and deregulates TOP2B in IEGs. Furthermore, we present the first cryo-EM structure of the human cell-purified TOP2B and etoposide together with the EGR1 transcriptional start site (-30 to +20) that has the strongest affinity to TOP2B within -423 to +332. The structure shows TOP2B-mediated breakage and dramatic bending of the DNA. Transcription is activated by etoposide, while it is inhibited by ICRF193 at EGR1 and FOS, suggesting that TOP2B-mediated DNA break to favor transcriptional activation. Taken together, this study suggests that activated ERK2 phosphorylates TOP2B to regulate TOP2-DNA interactions and favor transcriptional activation in IEGs. We propose that TOP2B association, catalysis, and dissociation on its substrate DNA are important processes for regulating transcription and that ERK2-mediated TOP2B phosphorylation may be key for the catalysis and dissociation steps.
Collapse
Affiliation(s)
- Heeyoun Bunch
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
- School of Applied Biosciences, College of Agriculture & Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Deukyeong Kim
- School of Applied Biosciences, College of Agriculture & Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Masahiro Naganuma
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Reiko Nakagawa
- RIKEN BDR Laboratory for Phyloinformatics, Hyogo, 650-0047, Japan
| | - Anh Cong
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jaehyeon Jeong
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Haruhiko Ehara
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Hongha Vu
- Department of Biology Education, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Matthew J Schellenberg
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Shun-Ichi Sekine
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| |
Collapse
|
2
|
Gautam M, Gabrani R. Synergism of d-limonene and temozolomide on migratory and apoptotic behaviors of human glioblastoma cell lines. BIOIMPACTS : BI 2023; 14:27681. [PMID: 39296804 PMCID: PMC11406426 DOI: 10.34172/bi.2023.27681] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/15/2023] [Accepted: 07/03/2023] [Indexed: 09/21/2024]
Abstract
Introduction Glioblastoma (GBM), which is a heterogeneous and aggressive type of brain tumor, is known for its poor survival outcomes. The treatment of GBM remains challenging primarily due to the drug resistance to the current standard therapeutic option, temozolomide (TMZ). Researchers are currently focusing on developing an appropriate alternative combinatorial therapeutic to enhance treatment outcomes. D-limonene (DL) is a monoterpene derived from citrus fruit. This study aims to assess the impact of combining DL with TMZ and explore its potential mechanism of action in U87MG and LN229 GBM cells. Methods The effects of the combined treatment of DL and TMZ were assessed on various cellular aspects, including cell viability, anchorage-independent cell growth, and DNA damage. Furthermore, the influence of this combination on cell cycle progression, cell migration, and cell death was also investigated. Results The combination of DL+TMZ demonstrated a synergistic effect, resulting in reduced cell proliferation and suppressing the colony formation ability of a single cell. Treatment with DL and TMZ arrested the cells in G0/G1 phase. Furthermore, the DL+TMZ combination induced apoptosis by upregulating the expression of Bax, and Caspase (CASP)-3, while reducing the expression of the Bcl-2 gene in GBM cells. In addition, the combined treatment of DL+TMZ significantly decreased the expression of matrix metalloproteinase (MMP)-2 and MMP-9, expression, indicating inhibition of cell migration in GBM cells. Conclusion In conclusion, the combination of DL and TMZ demonstrated a synergistic effect in reducing cell proliferation, suppressing colony formation, inducing apoptosis, and inhibiting cell migration in GBM cells. These findings suggest the potential of DL+TMZ combination therapy as an effective treatment for GBM.
Collapse
Affiliation(s)
- Megha Gautam
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Reema Gabrani
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| |
Collapse
|
3
|
Khodakarami A, Adibfar S, Karpisheh V, Abolhasani S, Jalali P, Mohammadi H, Gholizadeh Navashenaq J, Hojjat-Farsangi M, Jadidi-Niaragh F. The molecular biology and therapeutic potential of Nrf2 in leukemia. Cancer Cell Int 2022; 22:241. [PMID: 35906617 PMCID: PMC9336077 DOI: 10.1186/s12935-022-02660-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 07/19/2022] [Indexed: 02/07/2023] Open
Abstract
NF-E2-related factor 2 (Nrf2) transcription factor has contradictory roles in cancer, which can act as a tumor suppressor or a proto-oncogene in different cell conditions (depending on the cell type and the conditions of the cell environment). Nrf2 pathway regulates several cellular processes, including signaling, energy metabolism, autophagy, inflammation, redox homeostasis, and antioxidant regulation. As a result, it plays a crucial role in cell survival. Conversely, Nrf2 protects cancerous cells from apoptosis and increases proliferation, angiogenesis, and metastasis. It promotes resistance to chemotherapy and radiotherapy in various solid tumors and hematological malignancies, so we want to elucidate the role of Nrf2 in cancer and the positive point of its targeting. Also, in the past few years, many studies have shown that Nrf2 protects cancer cells, especially leukemic cells, from the effects of chemotherapeutic drugs. The present paper summarizes these studies to scrutinize whether targeting Nrf2 combined with chemotherapy would be a therapeutic approach for leukemia treatment. Also, we discussed how Nrf2 and NF-κB work together to control the cellular redox pathway. The role of these two factors in inflammation (antagonistic) and leukemia (synergistic) is also summarized.
Collapse
Affiliation(s)
- Atefeh Khodakarami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Adibfar
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Abolhasani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pooya Jalali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.,Department of Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Zhang W, Zheng X, Gong Y, Jiang T, Qiu J, Wu X, Lu F, Wang Z, Hong Z. VX-11e protects articular cartilage and subchondral bone in osteoarthritis by inhibiting the RIP1/RIP3/MLKL and MAPK signaling pathways. Bioorg Chem 2022; 120:105632. [DOI: 10.1016/j.bioorg.2022.105632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/16/2022] [Indexed: 12/18/2022]
|
5
|
|
6
|
High WHSC1L1 Expression Reduces Survival Rates in Operated Breast Cancer Patients with Decreased CD8+ T Cells: Machine Learning Approach. J Pers Med 2021; 11:jpm11070636. [PMID: 34357103 PMCID: PMC8303194 DOI: 10.3390/jpm11070636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
Nuclear receptor-binding SET domain protein (NSD), a histone methyltransferase, is known to play an important role in cancer pathogenesis. The WHSC1L1 (Wolf-Hirschhorn syndrome candidate 1-like 1) gene, encoding NSD3, is highly expressed in breast cancer, but its role in the development of breast cancer is still unknown. The purpose of this study was to analyze the survival rates and immune responses of breast cancer patients with high WHSC1L1 expression and to validate the results using gradient boosting machine (GBM) in breast cancer. We investigated the clinicopathologic parameters, proportions of immune cells, pathway networks and in vitro drug responses according to WHSC1L1 expression in 456, 1500 and 776 breast cancer patients from the Hanyang University Guri Hospital, METABRIC and TCGA, respectively. High WHSC1L1 expression was associated with poor prognosis, decreased CD8+ T cells and high CD274 expression (encoding PD-L1). In the pathway networks, WHSC1L1 was indirectly linked to the regulation of the lymphocyte apoptotic process. The GBM model with WHSC1L1 showed improved prognostic performance compared with the model without WHSC1L1. We found that VX-11e, CZC24832, LY2109761, oxaliplatin and erlotinib were effective in inhibiting breast cancer cell lines with high WHSC1L1 expression. High WHSC1L1 expression could play potential roles in the progression of breast cancer and targeting WHSC1L1 could be a potential strategy for the treatment of breast cancer.
Collapse
|
7
|
Jasek-Gajda E, Jurkowska H, JasiŃska M, Litwin JA, Lis GJ. Combination of ERK2 and STAT3 Inhibitors Promotes Anticancer Effects on Acute Lymphoblastic Leukemia Cells. Cancer Genomics Proteomics 2021; 17:517-527. [PMID: 32859630 DOI: 10.21873/cgp.20208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/01/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIM Deregulated activation of signaling through the RAS/RAF/mitogen-activated protein kinase/extracellular signal-regulated kinase (RAS/RAF/MEK/ERK) and signal transducer and activator of transcription (STAT) pathways is involved in numerous hematological malignancies, making it an attractive therapeutic target. This study aimed to assess the effect of the combination of ERK2 inhibitor VX-11e and STAT3 inhibitor STA-21 on acute lymphoblastic leukemia cell lines REH and MOLT-4. MATERIALS AND METHODS REH and MOLT-4 cell lines were cultured with each drug alone and in combination. Cell viability, ERK activity, cell cycle distribution, apoptosis and oxidative stress induction were assessed by flow cytometry. Protein levels of STAT3, phospho-STAT3, protein tyrosine phosphatase 4A3 (PTP4A3), survivin, p53 and p21 were determined by western blotting. RESULTS VX-11e in combination with STA-21 significantly inhibited cell viability, induced G0/G1 cell-cycle arrest, enhanced production of reactive oxygen species, and induced apoptosis. These effects were associated with an increased level of p21 protein in REH cells and with reduced levels of phopho-STAT3, survivin and PTP4A3 proteins in MOLT-4 cells. CONCLUSION Our findings provide a rationale for combined inhibition of RAS/RAF/MEK/ERK and STAT3 pathways in order to enhance anticancer effects against acute lymphoblastic leukemia cells.
Collapse
Affiliation(s)
- Ewa Jasek-Gajda
- Department of Histology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Halina Jurkowska
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - MaŁgorzata JasiŃska
- Department of Histology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Jan A Litwin
- Department of Histology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Grzegorz J Lis
- Department of Histology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
8
|
Slimani I, Mansour L, Özdemir I, Gürbüz N, Hamdi N. Synthesis, characterization and catalytic activity of PEPPSI-type palladium–NHC complexes. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Xue Y, Chen W, Mai Z, Yu X, Wu Q, Wan C, Su X, Wu Y, Rong Z, Zheng H. Inhibition of the Extracellular Signal-Regulated Kinase/Ribosomal S6 Kinase Cascade Limits Chlamydia trachomatis Infection. J Invest Dermatol 2020; 141:852-862.e6. [PMID: 32918951 DOI: 10.1016/j.jid.2020.07.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/01/2020] [Accepted: 07/15/2020] [Indexed: 10/23/2022]
Abstract
Chlamydiatrachomatis is the cause of the most common bacterial sexually transmitted infection worldwide. Azithromycin is effective in treating chlamydial infection; however, resistance to this antibiotic is increasing, and it is important that new therapeutic strategies are developed. In this study, we demonstrated that inhibitors targeting each kinase in the extracellular signal-regulated kinase/ribosomal S6 kinase cascade significantly decreased the size and number of inclusions as well as the number of infectious progeny. The suppressive effects of the inhibitors were observed across the Chlamydia serotypes D, E, F, and L1 and across HeLa, McCoy, and Vero host cells. When combined with azithromycin, all the inhibitors exerted a synergistic suppressive effect on chlamydial infection. Knockdown experiments using small interfering RNA demonstrated that extracellular signal-regulated kinase 1/2 and ribosomal S6 kinase 1 were crucial for chlamydial infection. Moreover, BVD-523, a first-in-class extracellular signal-regulated kinase 1/2 inhibitor currently undergoing a phase II clinical trial, suppressed chlamydial infection both in cell culture and in a mouse model. These observations demonstrated not only that the extracellular signal-regulated kinase/ribosomal S6 kinase pathway plays a critical role in chlamydial infection but also that these kinases have potential as targets for host-directed therapy against C. trachomatis.
Collapse
Affiliation(s)
- Yaohua Xue
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Wentao Chen
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Zhida Mai
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Xueying Yu
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Qian Wu
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Chengsong Wan
- Department of Microbiology, Southern Medical University, Guangzhou, China
| | - Xin Su
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yiquan Wu
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Zhili Rong
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Research Center, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Heping Zheng
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Targeting the MAPK/ERK and PI3K/AKT Signaling Pathways Affects NRF2, Trx and GSH Antioxidant Systems in Leukemia Cells. Antioxidants (Basel) 2020; 9:antiox9070633. [PMID: 32709140 PMCID: PMC7402140 DOI: 10.3390/antiox9070633] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/31/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK)/extracellular signal kinase (ERK) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signal transduction pathways have been implicated in the pathogenesis of leukemia. The aim of this study was to investigate the effect of the combination of ERK1/2 inhibitor AZD0364 and PI3K inhibitor ZSTK474 on acute lymphoblastic leukemia (ALL) REH, MOLT-4, acute myeloid leukemia (AML) MOLM-14, and chronic myeloid leukemia (CML) K562 cell lines. To evaluate the interactions of the drugs, cells were treated for 48 h with AZD0364 or ZSTK474 alone and in combination at fixed ratios. The combinatorial effects of both inhibitors were synergistic over a wide range of concentrations in REH, MOLT-4, and MOLM-14 cell lines. However, in K562 cells, the effects were found to be antagonistic. Furthermore, AZD0364 and ZSTK474 significantly decreased both ERK1/2 and AKT activation in REH, MOLT-4, and MOLM-14 cells. The results showed that incubation with both AZD0364 and ZSTK474 inhibited cell viability, increased reactive oxygen species (ROS) production, and induced apoptosis in leukemia cells. We observed that combined treatment with AZD0364 and ZSTK474 affected nuclear factor-κB (NF-κB) and antioxidant protein levels: NF-E2-related factor 2 (NRF2), heme oxygenase-1 (HO-1), thioredoxin (Trx), thioredoxin reductase (TrxR), and the reduced glutathione/oxidized glutathione (GSH/GSSG) ratio. These effects were accompanied with decreased antiapoptotic survivin protein level. However, distinct cell line dependent effects were observed. In conclusion, the combination of AZD0364 and ZSTK474 can exert a synergistic anticancer effect in ALL and AML cells, which is associated with the induction of oxidative stress and the involvement of cellular antioxidant defense mechanisms.
Collapse
|