1
|
Bai Y, Sui X, Xuan Z, Du Y, Fu M, Zheng Z, Yang K, Xu C, Liu Y, Liu B, Zhong M, Zhang Z, Zheng J, Hu X, Zhang L, Sun H, Shao C. Discovery of a small-molecule NDR1 agonist for prostate cancer therapy. Front Pharmacol 2024; 15:1367358. [PMID: 38410130 PMCID: PMC10896269 DOI: 10.3389/fphar.2024.1367358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/30/2024] [Indexed: 02/28/2024] Open
Abstract
Prostatic cancer (PCa) is a common malignant neoplasm in men worldwide. Most patients develop castration-resistant prostate cancer (CRPC) after treatment with androgen deprivation therapy (ADT), usually resulting in death. Therefore, investigating new therapeutic targets and drugs for PCa patients is urgently needed. Nuclear Dbf2-related kinase 1 (NDR1), also known as STK38, is a serine/threonine kinase in the NDR/LATS kinase family that plays a critical role in cellular processes, including immunity, inflammation, metastasis, and tumorigenesis. It was reported that NDR1 inhibited the metastasis of prostate cancer cells by suppressing epithelial-mesenchymal transition (EMT), and decreased NDR1 expression might lead to a poorer prognosis, suggesting the enormous potential of NDR1 in antitumorigenesis. In this study, we characterized a small-molecule agonist named aNDR1, which specifically bound to NDR1 and potently promoted NDR1 expression, enzymatic activity and phosphorylation. aNDR1 exhibited drug-like properties, such as favorable stability, plasma protein binding capacity, cell membrane permeability, and PCa cell-specific inhibition, while having no obvious effect on normal prostate cells. Meanwhile, aNDR1 exhibited good antitumor activity both in vitro and in vivo. aNDR1 inhibited proliferation and migration of PCa cells and promoted apoptosis of PCa cells in vitro. We further found that aNDR1 inhibited subcutaneous tumors and lung metastatic nodules in vivo, with no obvious toxicity to the body. In summary, our study presents a potential small-molecule lead compound that targets NDR1 for clinical therapy of PCa patients.
Collapse
Affiliation(s)
- Yang Bai
- School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiuyuan Sui
- School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zuodong Xuan
- School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yifan Du
- School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Meiling Fu
- School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zeyuan Zheng
- School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Kunao Yang
- School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Chunlan Xu
- School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yankuo Liu
- School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Bin Liu
- School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Min Zhong
- School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zhengying Zhang
- School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jianzhong Zheng
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiaoyan Hu
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Lei Zhang
- School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Huimin Sun
- School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Chen Shao
- School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
2
|
Kari S, Subramanian K, Altomonte IA, Murugesan A, Yli-Harja O, Kandhavelu M. Programmed cell death detection methods: a systematic review and a categorical comparison. Apoptosis 2022; 27:482-508. [PMID: 35713779 PMCID: PMC9308588 DOI: 10.1007/s10495-022-01735-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 01/15/2023]
Abstract
Programmed cell death is considered a key player in a variety of cellular processes that helps to regulate tissue growth, embryogenesis, cell turnover, immune response, and other biological processes. Among different types of cell death, apoptosis has been studied widely, especially in the field of cancer research to understand and analyse cellular mechanisms, and signaling pathways that control cell cycle arrest. Hallmarks of different types of cell death have been identified by following the patterns and events through microscopy. Identified biomarkers have also supported drug development to induce cell death in cancerous cells. There are various serological and microscopic techniques with advantages and limitations, that are available and are being utilized to detect and study the mechanism of cell death. The complexity of the mechanism and difficulties in distinguishing among different types of programmed cell death make it challenging to carry out the interventions and delay its progression. In this review, mechanisms of different forms of programmed cell death along with their conventional and unconventional methods of detection of have been critically reviewed systematically and categorized on the basis of morphological hallmarks and biomarkers to understand the principle, mechanism, application, advantages and disadvantages of each method. Furthermore, a very comprehensive comparative analysis has been drawn to highlight the most efficient and effective methods of detection of programmed cell death, helping researchers to make a reliable and prudent selection among the available methods of cell death assay. Conclusively, how programmed cell death detection methods can be improved and can provide information about distinctive stages of cell death detection have been discussed.
Collapse
Affiliation(s)
- Sana Kari
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101, Tampere, Finland
| | - Kumar Subramanian
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101, Tampere, Finland
| | - Ilenia Agata Altomonte
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101, Tampere, Finland
| | - Akshaya Murugesan
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101, Tampere, Finland.,Department of Biotechnology, Lady Doak College, Thallakulam, Madurai, 625002, India
| | - Olli Yli-Harja
- Institute for Systems Biology, 1441N 34th Street, Seattle, WA, USA.,Computational Systems Biology Group, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101, Tampere, Finland
| | - Meenakshisundaram Kandhavelu
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101, Tampere, Finland. .,Department of Biotechnology, Lady Doak College, Thallakulam, Madurai, 625002, India.
| |
Collapse
|