1
|
Heitzmann LD, Challe M, Perez J, Castell L, Galibert E, Martin AO, Valjent E, Veyrunes F. Genotypic sex shapes maternal care in the African pygmy mouse, Mus minutoides. Proc Biol Sci 2023; 290:20231224. [PMID: 37670585 PMCID: PMC10510450 DOI: 10.1098/rspb.2023.1224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/03/2023] [Indexed: 09/07/2023] Open
Abstract
Sexually dimorphic behaviours, such as parental care, have long been thought to be mainly driven by gonadal hormones. In the past two decades, a few studies have challenged this view, highlighting the direct influence of the sex chromosome complement (XX versus XY or ZZ versus ZW). The African pygmy mouse, Mus minutoides, is a wild mouse species with naturally occurring XY sex reversal induced by a third, feminizing X* chromosome, leading to three female genotypes: XX, XX* and X*Y. Here, we show that sex reversal in X*Y females shapes a divergent maternal care strategy (maternal aggression, pup retrieval and nesting behaviours) from both XX and XX* females. Although neuroanatomical investigations were inconclusive, we show that the dopaminergic system in the anteroventral periventricular nucleus of the hypothalamus is worth investigating further as it may support differences in pup retrieval behaviour between females. Combining behaviours and neurobiology in a rodent subject to natural selection, we evaluate potential candidates for the neural basis of maternal behaviours and strengthen the underestimated role of the sex chromosomes in shaping sex differences in brain and behaviours. All things considered, we further highlight the emergence of a third sexual phenotype, challenging the binary view of phenotypic sexes.
Collapse
Affiliation(s)
- Louise D. Heitzmann
- ISEM, Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Marie Challe
- ISEM, Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Julie Perez
- ISEM, Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Laia Castell
- IGF, Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Evelyne Galibert
- IGF, Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Agnès O. Martin
- IGF, Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Emmanuel Valjent
- IGF, Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Frédéric Veyrunes
- ISEM, Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
2
|
Raznahan A, Disteche CM. X-chromosome regulation and sex differences in brain anatomy. Neurosci Biobehav Rev 2021; 120:28-47. [PMID: 33171144 PMCID: PMC7855816 DOI: 10.1016/j.neubiorev.2020.10.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 01/08/2023]
Abstract
Humans show reproducible sex-differences in cognition and psychopathology that may be contributed to by influences of gonadal sex-steroids and/or sex-chromosomes on regional brain development. Gonadal sex-steroids are well known to play a major role in sexual differentiation of the vertebrate brain, but far less is known regarding the role of sex-chromosomes. Our review focuses on this latter issue by bridging together two literatures that have to date been largely disconnected. We first consider "bottom-up" genetic and molecular studies focused on sex-chromosome gene content and regulation. This literature nominates specific sex-chromosome genes that could drive developmental sex-differences by virtue of their sex-biased expression and their functions within the brain. We then consider the complementary "top down" view, from magnetic resonance imaging studies that map sex- and sex chromosome effects on regional brain anatomy, and link these maps to regional gene-expression within the brain. By connecting these top-down and bottom-up approaches, we emphasize the potential role of X-linked genes in driving sex-biased brain development and outline key goals for future work in this field.
Collapse
Affiliation(s)
- Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, 20892, USA.
| | - Christine M Disteche
- Department of Pathology and Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
3
|
Wistuba J, Beumer C, Brehm R, Gromoll J. 41,XX Y * male mice: An animal model for Klinefelter syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:267-278. [PMID: 32432406 DOI: 10.1002/ajmg.c.31796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/25/2022]
Abstract
Klinefelter syndrome (KS, 47,XXY) is the most frequent male chromosomal aneuploidy resulting in a highly heterogeneous clinical phenotype associated with hormonal dysbalance, increased rate of co-morbidities, and reduced lifespan. Two hallmarks of KS-affecting testicular functions are consistently observed: Hypergonadotropic hypogonadism and germ cell (GC) loss resulting in infertility. Although KS is being studied for decades, the underlying mechanisms for the observed pathophysiology are still unclear. Due to ethical restrictions, studies in humans are limited, and consequently, suitable animal models are needed to address the consequences of a supernumerary X chromosome. Mouse strains with comparable aneuploidies have been generated and yielded highly relevant insights into KS. We briefly describe the establishment of the KS mouse models, summarize the knowledge gained by their use, compare findings from the mouse models to those obtained in clinical studies, and also reflect on limitations of the currently used models derived from the B6Ei.Lt-Y* mouse strain, in which the Y chromosome is altered and its centromere position changed into a more distal location provoking meiotic non-disjunction. Breeding such as XY* males to XX females, the target 41,XXY *, and 41,XXY males are generated. Here, we summarize features of both models but report in particular findings from our 41,XXY * mice including some novel data on Sertoli cell characteristics.
Collapse
Affiliation(s)
- Joachim Wistuba
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - Cristin Beumer
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - Ralph Brehm
- Functional Histology and Cell Biology, Institute for Anatomy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jörg Gromoll
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| |
Collapse
|
4
|
Sex steroid hormone modulation of neural stem cells: a critical review. Biol Sex Differ 2019; 10:28. [PMID: 31146782 PMCID: PMC6543604 DOI: 10.1186/s13293-019-0242-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/13/2019] [Indexed: 12/18/2022] Open
Abstract
While numerous in vivo experiments have sought to explore the effects of sex chromosome composition and sex steroid hormones on cellular proliferation and differentiation within the mammalian brain, far fewer studies as reviewed here, have explored these factors using a direct in vitro approach. Generally speaking, in vivo studies provide the gold standard to demonstrate applicable findings in regards to the role hormones play in development. However, in the case of neural stem cell (NSC) biology, there remain many unknown factors that likely contribute to observations made within the developed brain, specifically in regions where there are abundant sex steroid hormone receptors. For these reasons, using a NSC in vitro model may provide a more controlled and refined system to explore the direct effects of sex and hormone response, limiting the vast array of other influences on NSCs occurring during development and within adult cellular niches. These specific cellular models may have the ability to greatly improve the mechanistic understanding of changes occurring within the developing brain during the hormonal organization process, in addition to other modifications that may contribute to neuro-psychiatric sex-biased diseases.
Collapse
|
5
|
Fernández R, Guillamón A, Gómez-Gil E, Esteva I, Almaraz MC, Cortés-Cortés J, Lamas B, Lema E, Pásaro E. Analyses of karyotype by G-banding and high-resolution microarrays in a gender dysphoria population. Genes Genomics 2018; 40:465-473. [DOI: 10.1007/s13258-017-0646-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 12/29/2017] [Indexed: 12/31/2022]
|
6
|
Arnold AP, Reue K, Eghbali M, Vilain E, Chen X, Ghahramani N, Itoh Y, Li J, Link JC, Ngun T, Williams-Burris SM. The importance of having two X chromosomes. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150113. [PMID: 26833834 DOI: 10.1098/rstb.2015.0113] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2015] [Indexed: 12/14/2022] Open
Abstract
Historically, it was thought that the number of X chromosomes plays little role in causing sex differences in traits. Recently, selected mouse models have been used increasingly to compare mice with the same type of gonad but with one versus two copies of the X chromosome. Study of these models demonstrates that mice with one X chromosome can be strikingly different from those with two X chromosomes, when the differences are not attributable to confounding group differences in gonadal hormones. The number of X chromosomes affects adiposity and metabolic disease, cardiovascular ischaemia/reperfusion injury and behaviour. The effects of X chromosome number are likely the result of inherent differences in expression of X genes that escape inactivation, and are therefore expressed from both X chromosomes in XX mice, resulting in a higher level of expression when two X chromosomes are present. The effects of X chromosome number contribute to sex differences in disease phenotypes, and may explain some features of X chromosome aneuploidies such as in Turner and Klinefelter syndromes.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA Laboratory of Neuroendocrinology, UCLA Brain Research Institute, Los Angeles, CA, USA
| | - Karen Reue
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Mansoureh Eghbali
- Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Eric Vilain
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Xuqi Chen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA Laboratory of Neuroendocrinology, UCLA Brain Research Institute, Los Angeles, CA, USA
| | - Negar Ghahramani
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA Laboratory of Neuroendocrinology, UCLA Brain Research Institute, Los Angeles, CA, USA
| | - Yuichiro Itoh
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA Laboratory of Neuroendocrinology, UCLA Brain Research Institute, Los Angeles, CA, USA
| | - Jingyuan Li
- Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jenny C Link
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Tuck Ngun
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA Laboratory of Neuroendocrinology, UCLA Brain Research Institute, Los Angeles, CA, USA
| | - Shayna M Williams-Burris
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA Interdepartmental Program for Neuroscience, University of California, Los Angeles, Los Angeles, CA, USA Laboratory of Neuroendocrinology, UCLA Brain Research Institute, Los Angeles, CA, USA
| |
Collapse
|
7
|
Fisher AD, Castellini G, Casale H, Fanni E, Bandini E, Campone B, Ferruccio N, Maseroli E, Boddi V, Dèttore D, Pizzocaro A, Balercia G, Oppo A, Ricca V, Maggi M. Hypersexuality, Paraphilic Behaviors, and Gender Dysphoria in Individuals with Klinefelter's Syndrome. J Sex Med 2015; 12:2413-24. [DOI: 10.1111/jsm.13048] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
McCarthy MM, Nugent BM. At the frontier of epigenetics of brain sex differences. Front Behav Neurosci 2015; 9:221. [PMID: 26347630 PMCID: PMC4543874 DOI: 10.3389/fnbeh.2015.00221] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 08/07/2015] [Indexed: 11/28/2022] Open
Abstract
The notion that epigenetics may play an important role in the establishment and maintenance of sex differences in the brain has garnered great enthusiasm but the reality in terms of actual advances has been slow. Two general approaches include the comparison of a particular epigenetic mark in males vs. females and the inhibition of key epigenetic enzymes or co-factors to determine if this eliminates a particular sex difference in brain or behavior. The majority of emphasis has been on candidate genes such as steroid receptors. Only recently have more generalized survey type approaches been achieved and these promise to open new vistas and accelerate discovery of important roles for DNA methylation, histone modification, genomic imprinting and microRNAs (miRs). Technical challenges abound and, while not unique to this field, will require novel thinking and new approaches by behavioral neuroendocrinologists.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Bridget M Nugent
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
9
|
Skakkebæk A, Wallentin M, Gravholt CH. Neuropsychology and socioeconomic aspects of Klinefelter syndrome: new developments. Curr Opin Endocrinol Diabetes Obes 2015; 22:209-16. [PMID: 25899809 DOI: 10.1097/med.0000000000000157] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To summarize recent important studies on neuropsychology and epidemiology of Klinefelter syndrome. PubMed was searched for 'Klinefelter', 'Klinefelter's' and 'XXY' in titles and abstracts. Relevant studies were obtained and reviewed, as well as other articles selected by the authors. RECENT FINDINGS Klinefelter syndrome is the most common sex-chromosome disorder in humans, affecting one in 660 men. The key findings in Klinefelter syndrome are small testes, hypergonadotropic hypogonadism and cognitive impairment. Klinefelter syndrome scores significantly below education matched controls on a range of cognitive tests with verbal skills displaying the largest effects. Boys with Klinefelter syndrome are often in the need of speech therapy and many suffer from learning disability and may benefit from special education. New studies are elucidating aspects of cognitive functioning and suggesting that neuropsychological treatment may be of value. The socioeconomic status and educational level of Klinefelter syndrome is severely affected with many struggling to achieve any or only shorter education, resulting in low-income levels and early retirement. In addition, few become fathers and fewer live with a partner compared with controls. Medical treatment is mainly testosterone replacement therapy in order to alleviate acute and long-term consequences of hypogonadism, as well as, treating or preventing the frequent comorbidity. SUMMARY The neurocognitive phenotype of Klinefelter syndrome is being unraveled and the need for psychological and cognitive treatment in many cases is evident. The neurocognitive deficits no doubt influence the socioeconomic status of many Klinefelter syndrome patients, which is clearly inferior to age-matched controls.
Collapse
Affiliation(s)
- Anne Skakkebæk
- aDepartment Clinical Genetics, Aarhus University Hospital bDepartment of Endocrinology and Internal Medicine cCenter of Functionally Integrative Neuroscience dCenter for Semiotics eDepartment of Molecular Medicine, Aarhus University Hospital, Denmark
| | | | | |
Collapse
|
10
|
Itoh Y, Mackie R, Kampf K, Domadia S, Brown JD, O’Neill R, Arnold AP. Four core genotypes mouse model: localization of the Sry transgene and bioassay for testicular hormone levels. BMC Res Notes 2015; 8:69. [PMID: 25870930 PMCID: PMC4354741 DOI: 10.1186/s13104-015-0986-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/20/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The "four core genotypes" (FCG) mouse model has emerged as a major model testing if sex differences in phenotypes are caused by sex chromosome complement (XX vs. XY) or gonadal hormones or both. The model involves deletion of the testis-determining gene Sry from the Y chromosome and insertion of an Sry transgene onto an autosome. It produces XX and XY mice with testes, and XX and XY mice with ovaries, so that XX and XY mice with the same type of gonad can be compared to assess phenotypic effects of sex chromosome complement in cells and tissues. FINDINGS We used PCR to amplify the Sry transgene and adjacent genomic sequences, to resolve the location of the Sry transgene to chromosome 3 and confirmed this location by fluorescence in situ hybridization (FISH) of the Sry construct to metaphase chromosomes. Using quantitative PCR, we estimate that 12-14 copies of the transgene were inserted. The anogenital distance (AGD) of FCG pups at 27-29 days after birth was not different in XX vs. XY males, or XX vs. XY females, suggesting that differences between XX and XY mice with the same type of gonad are not caused by difference in prenatal androgen levels. CONCLUSION The Sry transgene in FCG mice is present in multiple copies at one locus on chromosome 3, which does not interrupt known genes. XX and XY mice with the same type of gonad do not show evidence of different androgen levels prenatally.
Collapse
Affiliation(s)
- Yuichiro Itoh
- />Department of Integrative Biology & Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, 610 Charles E. Young Drive South, Los Angeles, CA USA
| | - Ryan Mackie
- />Department of Integrative Biology & Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, 610 Charles E. Young Drive South, Los Angeles, CA USA
| | - Kathy Kampf
- />Department of Integrative Biology & Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, 610 Charles E. Young Drive South, Los Angeles, CA USA
| | - Shelly Domadia
- />Department of Integrative Biology & Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, 610 Charles E. Young Drive South, Los Angeles, CA USA
| | - Judith D Brown
- />Institute for Systems Genomics and the Department of Allied Health Sciences, University of CT, Storrs, CT USA
| | - Rachel O’Neill
- />Institute for Systems Genomics and the Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT USA
| | - Arthur P Arnold
- />Department of Integrative Biology & Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, 610 Charles E. Young Drive South, Los Angeles, CA USA
| |
Collapse
|