1
|
Haro-Olmo MI, Mérida-Calvo L, Feliu-Talegón D, Feliu-Batlle V. Force Control of a Haptic Flexible-Link Antenna Based on a Lumped-Mass Model. Biomimetics (Basel) 2024; 9:414. [PMID: 39056855 PMCID: PMC11275050 DOI: 10.3390/biomimetics9070414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/22/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Haptic organs are common in nature and help animals to navigate environments where vision is not possible. Insects often use slender, lightweight, and flexible links as sensing antennae. These antennae have a muscle-endowed base that changes their orientation and an organ that senses the applied force and moment, enabling active sensing. Sensing antennae detect obstacles through contact during motion and even recognize objects. They can also push obstacles. In all these tasks, force control of the antenna is crucial. The objective of our research is to develop a haptic robotic system based on a sensing antenna, consisting of a very lightweight and slender flexible rod. In this context, the work presented here focuses on the force control of this device. To achieve this, (a) we develop a dynamic model of the antenna that moves under gravity and maintains point contact with an object, based on lumped-mass discretization of the rod; (b) we prove the robust stability property of the closed-loop system using the Routh stability criterion; and (c) based on this property, we design a robust force control system that performs efficiently regardless of the contact point with the object. We built a mechanical device replicating this sensing organ. It is a flexible link connected at one end to a 3D force-torque sensor, which is attached to a mechanical structure with two DC motors, providing azimuthal and elevation movements to the antenna. Our experiments in contact situations demonstrate the effectiveness of our control method.
Collapse
Affiliation(s)
- María Isabel Haro-Olmo
- Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Universidad de Castilla-La Mancha, 13005 Ciudad Real, Spain; (M.I.H.-O.); (L.M.-C.)
| | - Luis Mérida-Calvo
- Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Universidad de Castilla-La Mancha, 13005 Ciudad Real, Spain; (M.I.H.-O.); (L.M.-C.)
| | - Daniel Feliu-Talegón
- Department of Mechanical and Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates;
| | - Vicente Feliu-Batlle
- Escuela Técnica Superior de Ingeniería Industrial, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
2
|
Nikbakht N. More Than the Sum of Its Parts: Visual-Tactile Integration in the Behaving Rat. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1437:37-58. [PMID: 38270852 DOI: 10.1007/978-981-99-7611-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
We experience the world by constantly integrating cues from multiple modalities to form unified sensory percepts. Once familiar with multimodal properties of an object, we can recognize it regardless of the modality involved. In this chapter we will examine the case of a visual-tactile orientation categorization experiment in rats. We will explore the involvement of the cerebral cortex in recognizing objects through multiple sensory modalities. In the orientation categorization task, rats learned to examine and judge the orientation of a raised, black and white grating using touch, vision, or both. Their multisensory performance was better than the predictions of linear models for cue combination, indicating synergy between the two sensory channels. Neural recordings made from a candidate associative cortical area, the posterior parietal cortex (PPC), reflected the principal neuronal correlates of the behavioral results: PPC neurons encoded both graded information about the object and categorical information about the animal's decision. Intriguingly single neurons showed identical responses under each of the three modality conditions providing a substrate for a neural circuit in the cortex that is involved in modality-invariant processing of objects.
Collapse
Affiliation(s)
- Nader Nikbakht
- Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Collinson DW, Emnett HM, Ning J, Hartmann MJZ, Brinson LC. Tapered Polymer Whiskers to Enable Three-Dimensional Tactile Feature Extraction. Soft Robot 2020; 8:44-58. [PMID: 32513071 DOI: 10.1089/soro.2019.0055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many mammals use their vibrissae (whiskers) to tactually explore their surrounding environment. Vibrissae are thin tapered structures that transmit mechanical signals to a wealth of mechanical receptors (sensors) located in a follicle at each vibrissal base. A recent study has shown that-provided that the whisker is tapered-three mechanical signals at the base are sufficient to determine the three-dimensional location at which a whisker made contact with an object. However, creating biomimetic tapered whiskers has proved challenging from both materials and manufacturing standpoints. This study develops and characterizes an artificial whisker for use as part of a sensory input device that is a biomimic of the biological rat whisker neurosensory system. A novel manufacturing process termed surface conforming fiber drawing (SCFD) is developed to produce artificial whiskers that meet the requirements to be a successful mechanical and geometric mimic of the biological rat vibrissae. Testing the sensory capabilities of the artificial whisker shows improved performance over previous nontapered filaments. SCFD-manufactured tapered whiskers demonstrate the ability to predict contact point locations with a median distance error of 0.47 cm.
Collapse
Affiliation(s)
- David W Collinson
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Hannah M Emnett
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Jinqiang Ning
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Mitra J Z Hartmann
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Lynda Catherine Brinson
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| |
Collapse
|
4
|
Abstract
A fundamental question in the investigation of any sensory system is what physical signals drive its sensory neurons during natural behavior. Surprisingly, in the whisker system, it is only recently that answers to this question have emerged. Here, we review the key developments, focussing mainly on the first stage of the ascending pathway - the primary whisker afferents (PWAs). We first consider a biomechanical framework, which describes the fundamental mechanical forces acting on the whiskers during active sensation. We then discuss technical progress that has allowed such mechanical variables to be estimated in awake, behaving animals. We discuss past electrophysiological evidence concerning how PWAs function and reinterpret it within the biomechanical framework. Finally, we consider recent studies of PWAs in awake, behaving animals and compare the results to related studies of the cortex. We argue that understanding 'what the whiskers tell the brain' sheds valuable light on the computational functions of downstream neural circuits, in particular, the barrel cortex.
Collapse
|
5
|
Abstract
This study provides a synthetic viewpoint that compares, contrasts, and draws commonalities for biomimetic perception over a range of tactile sensors and tactile stimuli. Biomimetic active perception is formulated from three principles: (i) evidence accumulation based on leading models of perceptual decision making; (ii) action selection with an evidence-based policy, here based on overt focal attention; and (iii) sensory encoding of evidence based on neural coding. Two experiments with each of three biomimetic tactile sensors are considered: the iCub (capacitive) fingertip, the TacTip (optical) tactile sensor, and BIOTACT whiskers. For each sensor, one experiment considers a similar task (perception of shape and location) and the other a different tactile perception task. In all experiments, active perception with a biomimetic action selection policy based on focal attention outperforms passive perception with static or random action selection. The active perception also consistently reaches superresolved accuracy (hyperacuity) finer than the spacing between tactile elements. Biomimetic active touch thus offers a common approach for biomimetic tactile sensors to accurately and robustly characterize and explore non-trivial, uncertain environments analogous to how animals perceive the natural world.
Collapse
|
6
|
Mitchinson B, Prescott TJ. Whisker movements reveal spatial attention: a unified computational model of active sensing control in the rat. PLoS Comput Biol 2013; 9:e1003236. [PMID: 24086120 PMCID: PMC3784505 DOI: 10.1371/journal.pcbi.1003236] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/08/2013] [Indexed: 11/19/2022] Open
Abstract
Spatial attention is most often investigated in the visual modality through measurement of eye movements, with primates, including humans, a widely-studied model. Its study in laboratory rodents, such as mice and rats, requires different techniques, owing to the lack of a visual fovea and the particular ethological relevance of orienting movements of the snout and the whiskers in these animals. In recent years, several reliable relationships have been observed between environmental and behavioural variables and movements of the whiskers, but the function of these responses, as well as how they integrate, remains unclear. Here, we propose a unifying abstract model of whisker movement control that has as its key variable the region of space that is the animal's current focus of attention, and demonstrate, using computer-simulated behavioral experiments, that the model is consistent with a broad range of experimental observations. A core hypothesis is that the rat explicitly decodes the location in space of whisker contacts and that this representation is used to regulate whisker drive signals. This proposition stands in contrast to earlier proposals that the modulation of whisker movement during exploration is mediated primarily by reflex loops. We go on to argue that the superior colliculus is a candidate neural substrate for the siting of a head-centred map guiding whisker movement, in analogy to current models of visual attention. The proposed model has the potential to offer a more complete understanding of whisker control as well as to highlight the potential of the rodent and its whiskers as a tool for the study of mammalian attention.
Collapse
Affiliation(s)
- Ben Mitchinson
- Department Of Psychology, The University Of Sheffield, Sheffield, United Kingdom
| | - Tony J. Prescott
- Department Of Psychology, The University Of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
7
|
Deschênes M, Moore J, Kleinfeld D. Sniffing and whisking in rodents. Curr Opin Neurobiol 2012; 22:243-50. [PMID: 22177596 PMCID: PMC4934665 DOI: 10.1016/j.conb.2011.11.013] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 11/27/2011] [Accepted: 11/28/2011] [Indexed: 10/14/2022]
Abstract
Sniffing and whisking are two rhythmic orofacial motor activities that enable rodents to localize and track objects in their environment. They have related temporal dynamics, possibly as a result of both shared musculature and shared sensory tasks. Sniffing and whisking also constitute the overt expression of an animal's anticipation of a reward. Yet, the neuronal mechanisms that underlie the control of these behaviors have not been established. Here, we review the similarities between sniffing and whisking and suggest that such similarities indicate a mechanistic link between these two rhythmic exploratory behaviors.
Collapse
Affiliation(s)
- Martin Deschênes
- Department of Psychiatry and Neuroscience, Laval University, Québec City G1J 2G3, Canada.
| | | | | |
Collapse
|
8
|
Lepora NF, Fox CW, Evans MH, Diamond ME, Gurney K, Prescott TJ. Optimal decision-making in mammals: insights from a robot study of rodent texture discrimination. J R Soc Interface 2012; 9:1517-28. [PMID: 22279155 DOI: 10.1098/rsif.2011.0750] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Texture perception is studied here in a physical model of the rat whisker system consisting of a robot equipped with a biomimetic vibrissal sensor. Investigations of whisker motion in rodents have led to several explanations for texture discrimination, such as resonance or stick-slips. Meanwhile, electrophysiological studies of decision-making in monkeys have suggested a neural mechanism of evidence accumulation to threshold for competing percepts, described by a probabilistic model of Bayesian sequential analysis. For our robot whisker data, we find that variable reaction-time decision-making with sequential analysis performs better than the fixed response-time maximum-likelihood estimation. These probabilistic classifiers also use whatever available features of the whisker signals aid the discrimination, giving improved performance over a single-feature strategy, such as matching the peak power spectra of whisker vibrations. These results cast new light on how the various proposals for texture discrimination in rodents depend on the whisker contact mechanics and suggest the possibility of a common account of decision-making across mammalian species.
Collapse
Affiliation(s)
- Nathan F Lepora
- Department of Psychology, University of Sheffield, Sheffield S10 2TP, UK.
| | | | | | | | | | | |
Collapse
|
9
|
Dirks JH, Dürr V. Biomechanics of the stick insect antenna: damping properties and structural correlates of the cuticle. J Mech Behav Biomed Mater 2011; 4:2031-42. [PMID: 22098903 DOI: 10.1016/j.jmbbm.2011.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 06/28/2011] [Accepted: 07/01/2011] [Indexed: 11/17/2022]
Abstract
The antenna of the Indian stick insect Carausius morosus is a highly specialized near-range sensory probe used to actively sample tactile cues about location, distance or shape of external objects in real time. The length of the antenna's flagellum is 100 times the diameter at the base, making it a very delicate and slender structure. Like the rest of the insect body, it is covered by a protective exoskeletal cuticle, making it stiff enough to allow controlled, active, exploratory movements and hard enough to resist damage and wear. At the same time, it is highly flexible in response to contact forces, and returns rapidly to its straight posture without oscillations upon release of contact force. Which mechanical adaptations allow stick insects to unfold the remarkable combination of maintaining a sufficiently invariant shape between contacts and being sufficiently compliant during contact? What role does the cuticle play? Our results show that, based on morphological differences, the flagellum can be divided into three zones, consisting of a tapered cone of stiff exocuticle lined by an inner wedge of compliant endocuticle. This inner wedge is thick at the antenna's base and thin at its distal half. The decay time constant after deflection, a measure that indicates strength of damping, is much longer at the base (τ>25 ms) than in the distal half (τ<18 ms) of the flagellum. Upon experimental desiccation, reducing mass and compliance of the endocuticle, the flagellum becomes under-damped. Analysing the frequency components indicates that the flagellum can be abstracted with the model of a double pendulum with springs and dampers in both joints. We conclude that in the stick-insect antenna the cuticle properties described are structural correlates of damping, allowing for a straight posture in the instant of a new contact event, combined with a maximum of flexibility.
Collapse
Affiliation(s)
- Jan-Henning Dirks
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, 2 Dublin, Ireland.
| | | |
Collapse
|
10
|
Flanders M. What is the biological basis of sensorimotor integration? BIOLOGICAL CYBERNETICS 2011; 104:1-8. [PMID: 21287354 PMCID: PMC3154729 DOI: 10.1007/s00422-011-0419-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 12/29/2010] [Indexed: 05/18/2023]
Abstract
This Prospects presents the problems that must be solved by the vertebrate nervous system in the process of sensorimotor integration and motor control. The concepts of efference copy and inverse model are defined, and multiple biological mechanisms are described, including those that form the basis of integration, extrapolation, and comparison/cancellation operations. Open questions for future research include the biological basis of continuous and distributed versus modular control, and somatosensory-motor coordination.
Collapse
Affiliation(s)
- Martha Flanders
- Department of Neuroscience, University of Minnesota, Minneapolis, 55455, USA.
| |
Collapse
|
11
|
Anderson SR, Pearson MJ, Pipe A, Prescott T, Dean P, Porrill J. Adaptive Cancelation of Self-Generated Sensory Signals in a Whisking Robot. IEEE T ROBOT 2010. [DOI: 10.1109/tro.2010.2069990] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|