1
|
Autonomous Recovery from Spacecraft Plan Failures by Regulatory Repair While Retaining Operability. AEROSPACE 2022. [DOI: 10.3390/aerospace9010040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Pre-designed spacecraft plans suffer from failure due to the uncertain space environment. In this case, instead of spending a long time waiting for ground control to upload a feasible plan in order to achieve the mission goals, the spacecraft could repair the failed plan while executing another part of the plan. This paper proposes a method called Isolation and Repair Plan Failures (IRPF) for a spaceship with durable, concurrent, and resource-dependent actions. To enable the spacecraft to perform some actions when a plan fails, IRPF separates all defective actions from executable actions in the pre-designed plan according to causal analysis between the failure state and the established plan. Then, to address the competition between operation and repair during the partial execution of the plan, IRPF sets up several regulatory factors associated with the search process for a solution, and then repairs the broken plan within the limits of these factors. Experiments were carried out in simulations of a satellite and a multi-rover system. The results demonstrate that, compared with replanning and other plan-repair methods, IRPF creates an execution plan more quickly and searches for a recovery plan with fewer explored state nodes in a shorter period of time.
Collapse
|
2
|
Drone-Based Autonomous Motion Planning System for Outdoor Environments under Object Detection Uncertainty. REMOTE SENSING 2021. [DOI: 10.3390/rs13214481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent advances in autonomy of unmanned aerial vehicles (UAVs) have increased their use in remote sensing applications, such as precision agriculture, biosecurity, disaster monitoring, and surveillance. However, onboard UAV cognition capabilities for understanding and interacting in environments with imprecise or partial observations, for objects of interest within complex scenes, are limited, and have not yet been fully investigated. This limitation of onboard decision-making under uncertainty has delegated the motion planning strategy in complex environments to human pilots, which rely on communication subsystems and real-time telemetry from ground control stations. This paper presents a UAV-based autonomous motion planning and object finding system under uncertainty and partial observability in outdoor environments. The proposed system architecture follows a modular design, which allocates most of the computationally intensive tasks to a companion computer onboard the UAV to achieve high-fidelity results in simulated environments. We demonstrate the system with a search and rescue (SAR) case study, where a lost person (victim) in bushland needs to be found using a sub-2 kg quadrotor UAV. The navigation problem is mathematically formulated as a partially observable Markov decision process (POMDP). A motion strategy (or policy) is obtained once a POMDP is solved mid-flight and in real time using augmented belief trees (ABT) and the TAPIR toolkit. The system’s performance was assessed using three flight modes: (1) mission mode, which follows a survey plan and used here as the baseline motion planner; (2) offboard mode, which runs the POMDP-based planner across the flying area; and (3) hybrid mode, which combines mission and offboard modes for improved coverage in outdoor scenarios. Results suggest the increased cognitive power added by the proposed motion planner and flight modes allow UAVs to collect more accurate victim coordinates compared to the baseline planner. Adding the proposed system to UAVs results in improved robustness against potential false positive readings of detected objects caused by data noise, inaccurate detections, and elevated complexity to navigate in time-critical applications, such as SAR.
Collapse
|
3
|
UAV Framework for Autonomous Onboard Navigation and People/Object Detection in Cluttered Indoor Environments. REMOTE SENSING 2020. [DOI: 10.3390/rs12203386] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Response efforts in emergency applications such as border protection, humanitarian relief and disaster monitoring have improved with the use of Unmanned Aerial Vehicles (UAVs), which provide a flexibly deployed eye in the sky. These efforts have been further improved with advances in autonomous behaviours such as obstacle avoidance, take-off, landing, hovering and waypoint flight modes. However, most UAVs lack autonomous decision making for navigating in complex environments. This limitation creates a reliance on ground control stations to UAVs and, therefore, on their communication systems. The challenge is even more complex in indoor flight operations, where the strength of the Global Navigation Satellite System (GNSS) signals is absent or weak and compromises aircraft behaviour. This paper proposes a UAV framework for autonomous navigation to address uncertainty and partial observability from imperfect sensor readings in cluttered indoor scenarios. The framework design allocates the computing processes onboard the flight controller and companion computer of the UAV, allowing it to explore dangerous indoor areas without the supervision and physical presence of the human operator. The system is illustrated under a Search and Rescue (SAR) scenario to detect and locate victims inside a simulated office building. The navigation problem is modelled as a Partially Observable Markov Decision Process (POMDP) and solved in real time through the Augmented Belief Trees (ABT) algorithm. Data is collected using Hardware in the Loop (HIL) simulations and real flight tests. Experimental results show the robustness of the proposed framework to detect victims at various levels of location uncertainty. The proposed system ensures personal safety by letting the UAV to explore dangerous environments without the intervention of the human operator.
Collapse
|