Sini J, Passarino A, Bonicelli S, Violante M. A Simulation-Based Approach to Aid Development of Software-Based Hardware Failure Detection and Mitigation Algorithms of a Mobile Robot System.
SENSORS 2022;
22:s22134665. [PMID:
35808185 PMCID:
PMC9269304 DOI:
10.3390/s22134665]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/15/2022] [Accepted: 06/19/2022] [Indexed: 11/16/2022]
Abstract
Mechatronic systems, like mobile robots, are fairly complex. They are composed of electromechanical actuation components and sensing elements supervised by microcontrollers running complex embedded software. This paper proposes a novel approach to aid mobile robotics developers in adopting a rigorous development process to design and verify the robot’s detection and mitigation capabilities against random hardware failures affecting its sensors or actuators. Unfortunately, assessing the interactions between the various safety/mission-critical subsystem is quite complex. The failure mode effect analysis (FMEA) alongside an analysis of the failure detection capabilities (FMEDA) are the state-of-the-art methodologies for performing such an analysis. Various guidelines are available, and the authors decided to follow the one released by AIAG&VDA in June 2019. Since the robot’s behavior is based on embedded software, the FMEA has been integrated with the hardware/software interaction analysis described in the ECSS-Q-ST-30-02C manual. The core of this proposal is to show how a simulation-based approach, where the mechanical and electrical/electronic components are simulated alongside the embedded software, can effectively support FMEA. As a benchmark application, we considered the mobility system of a proof-of-concept assistance rover for Mars exploration designed by the D.I.A.N.A. student team at Politecnico di Torino. Thanks to the adopted approach, we described how to develop the detection and mitigation strategies and how to determine their effectiveness, with a particular focus on those affecting the sensors.
Collapse