1
|
Chen X, Wang R, Chen W, Lai L, Li Z. Decoy receptor-3 regulates inflammation and apoptosis via PI3K/AKT signaling pathway in coronary heart disease. Exp Ther Med 2019; 17:2614-2622. [PMID: 30906453 PMCID: PMC6425242 DOI: 10.3892/etm.2019.7222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 11/01/2018] [Indexed: 02/06/2023] Open
Abstract
Coronary heart disease is a disease characterized by coronary artery atherosclerosis lesions caused by vascular cavity stenosis, occlusion, myocardial ischemia, hypoxia or necrosis. Previous studies have demonstrated that decoy receptor-3 (DCR-3) can act as a pleiotropic immunomodulation for enhancing angiogenesis, which may be associated with the progression of coronary heart disease. In the present study, ELISA assay was used to investigate the plasma concentration level of DCR-3 in patients with coronary heart disease. The mRNA and protein level of DCR-3 in myocardial cells were determined by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. The role and molecular mechanism of DCR-3 was also evaluated in myocardial cells in mice with coronary heart disease. The role of small interfering RNA that targeted phosphoinositide 3-kinase (PI3K) in DCR-3 mediated apoptosis was confirmed by terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling and immunofluorescence. C57BL/6 mice with coronary heart disease were used to evaluate the efficacy of DCR-3 on inflammation and apoptosis. The data indicated that plasma concentration level of DCR-3 was downregulated in mice with coronary heart disease and that DCR-3 administration improved symptoms of coronary heart disease and prolonged survival of mice with coronary heart disease. In addition, it was demonstrated that DCR-3 treatment suppressed the inflammatory response and apoptosis of myocardial cells. Circulating DCR-3 concentration levels may be identified as a predictor of coronary heart disease and prognosis of coronary heart disease. Notably, it was also demonstrated that DCR-3 inhibited inflammatory factor expression levels by regulation of the PI3K/protein kinase B (AKT) signaling pathway. Taken together, these results indicate that increasing circulating DCR-3 plasma concentration is associated with degree of coronary heart disease, suggesting that DCR-3 may be a promising drug for the treatment of coronary heart disease via regulating inflammation and apoptosis through the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Xinjing Chen
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China.,Department of Cardiology, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Rehua Wang
- Department of Cardiology, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Wei Chen
- Department of Cardiology, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Li Lai
- Fujian Key Laboratory of Cardiovascular Disease, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Zhiliang Li
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
2
|
Fang C, Xie L, Liu C, Fu C, Ye W, Liu H, Zhang B. Berberine ameliorates neonatal necrotizing enterocolitis by activating the phosphoinositide 3-kinase/protein kinase B signaling pathway. Exp Ther Med 2018; 15:3530-3536. [PMID: 29545879 DOI: 10.3892/etm.2018.5858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 08/22/2017] [Indexed: 01/05/2023] Open
Abstract
Neonatal necrotizing enterocolitis (NEC) is a severe acquired disease that predominantly affects the small intestine of neonates. NEC is caused by a combination of metabolic products, dysfunctions of the blood vessels, mucus and other unknown factors. Berberine may induce beneficial effects on necrotic and cardiovascular diseases due to its anti-inflammatory and anti-apoptotic effects on epithelial cells. In the present study, the therapeutic effects of berberine were investigated and the potential mechanisms by which it functions within a neonatal NEC mouse model were analyzed. Inflammation and levels of associated factors were measured in the serum of mice with NEC prior to and following treatment with berberine. Apoptotic rates in epithelial cells were analyzed following treatment with berberine. The expression of genes associated with apoptosis and apoptosis signaling were determined in epithelial cells in the small intestines of mice with NEC following treatment with berberine. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway was investigated in epithelial cells isolated from mice following treatment with either berberine or PBS. Histology and immunohistochemistry were used to determine the area of infarction and apoptosis. Body weight and food intake were measured to evaluate the physical effects of berberine on mice with NEC. The results indicated that berberine attenuated the inflammation caused by NEC in mice after 10 days of treatment. The apoptosis rate of epithelial cells isolated from experimental mice was decreased following berberine treatment. Western blot analysis indicated that the expression of the anti-apoptotic genes c-Myc and p53 were upregulated by berberine, whereas caspase-3 and -9 levels were downregulated in epithelial cells following treatment with berberine. In addition, the expression and phosphorylation levels of PI3K and AKT were downregulated in epithelial cells following treatment with berberine. An in vitro assay indicated that treatment with PI3K alone increased the expression of AKT and promoted the apoptosis of epithelial cells. Treatment with berberine markedly increased epidermal growth factor (EGF) and Bcl-2 expression levels, the activity of epithelial cells and decreased the infarction area of the small intestine. Accordingly, the body weight and food intake of mice with NEC were increased following berberine treatment. Therefore, the results of the present study demonstrate that berberine inhibits inflammation and apoptosis via the PI3K/AKT signaling pathway and may therefore attenuate the progression of NEC. These results suggest that berberine may be a potential therapeutic agent for the treatment of patients with NEC.
Collapse
Affiliation(s)
- Chengzhi Fang
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lili Xie
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chunmei Liu
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chunhua Fu
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei Ye
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hong Liu
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Binghong Zhang
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
3
|
Wang L, Xue Y, Ma H, Shi H, Wang L, Cui X. Prazosin protects myocardial cells against anoxia-reoxygenation injury via the extracellular signal‑regulated kinase signaling pathway. Mol Med Rep 2017; 17:2145-2152. [PMID: 29207167 PMCID: PMC5783458 DOI: 10.3892/mmr.2017.8175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 07/11/2017] [Indexed: 11/09/2022] Open
Abstract
Ischemic heart disease (including coronary arterial atherosclerosis, or vascular cavity stenosis or occlusion) remains the leading cause of disease-associated mortality worldwide. Prazosin, a receptor blocker of postsynaptic adrenaline, is essential in expanding peripheral arteries, which decreases peripheral vascular resistance, and regulates anti-hypertensive action. However, the mechanisms underlying the effects of prazosin have not been fully elucidated. The aim of the present study was to investigate the protective effects of prazosin on myocardial cells against anoxia-reoxygenation injury in a mouse model. The regulatory effects of prazosin on blood lipid levels and blood pressure were investigated in experimental mice. Furthermore, inflammation responses and oxidative stress in myocardial cells were analyzed in mice treated with prazosin. Apoptotic myocardial cells were investigated in experimental mice treated with prazosin. In addition, apoptotic gene expression levels were evaluated in myocardial cells. Extracellular signal-regulated kinase (ERK) expression and phosphorylation was investigated in myocardial cells in mice with anoxia-reoxygenation injury following prazosin treatment. The activity and expression levels of nuclear factor of activated T cells (NF-AT), activator protein 1 (AP-1) and necrosis factor (NF)-κB were observed in myocardial cells. Furthermore, histological analyses were performed to investigate the benefits of prazosin treatment on anoxia-reoxygenation injury. The results of the present study identified that prazosin decreased the expression levels of inflammatory factors, interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-10 and IL-1 in the serum of mice exhibiting hypoxia/reoxygenation injury. Oxidative stress was observed to be improved and the apoptosis rate was decreased in myocardial cells in anoxia-reoxygenation injury model mice treated with prazosin. ERK expression and phosphorylation was upregulated, and expression levels of NF-AT, AP-1 and NF-κB were downregulated in the myocardial cells of mice treated with prazosin. Blood lipid levels and blood pressure of the anoxia-reoxygenation injury model mice were markedly improved following treatment with prazosin. Histological analysis indicated that the area, circumference fragmentation and segmentation of myocardial cells were significantly improved following prazosin treatment. Thus, these results indicate that prazosin treatment decreases inflammation responses, oxidative stress, and apoptosis of myocardial cells via regulation of the ERK signaling pathway. The findings indicate that prazosin may present as a potential therapeutic agent for the treatment of hypoxia/reoxygenation injury.
Collapse
Affiliation(s)
- Lixin Wang
- Department of Cardiovascular Surgery, The General Hospital of Chinese People's Armed Police Force, Beijing 100039, P.R. China
| | - Yan Xue
- Department of Cardiovascular Surgery, The General Hospital of Chinese People's Armed Police Force, Beijing 100039, P.R. China
| | - Hao Ma
- Department of Cardiovascular Surgery, The General Hospital of Chinese People's Armed Police Force, Beijing 100039, P.R. China
| | - Haiyan Shi
- Department of Cardiovascular Surgery, The General Hospital of Chinese People's Armed Police Force, Beijing 100039, P.R. China
| | - Ling Wang
- Department of Cardiovascular Surgery, The General Hospital of Chinese People's Armed Police Force, Beijing 100039, P.R. China
| | - Xiaozheng Cui
- Department of Cardiovascular Surgery, The General Hospital of Chinese People's Armed Police Force, Beijing 100039, P.R. China
| |
Collapse
|
4
|
Wang L, Ma H, Xue Y, Shi H, Ma T, Cui X. Berberine inhibits the ischemia-reperfusion injury induced inflammatory response and apoptosis of myocardial cells through the phosphoinositide 3-kinase/RAC-α serine/threonine-protein kinase and nuclear factor-κB signaling pathways. Exp Ther Med 2017; 15:1225-1232. [PMID: 29403554 PMCID: PMC5780743 DOI: 10.3892/etm.2017.5575] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 07/14/2017] [Indexed: 12/24/2022] Open
Abstract
Myocardial ischemia-reperfusion injury is one of the most common cardiovascular diseases, and can lead to serious damage and dysfunction of the myocardial tissue. Previous studies have demonstrated that berberine exhibits ameliorative effects on cardiovascular disease. The present study further investigated the efficacy and potential mechanism underlying the effects of berberine on ischemia-reperfusion injury in a mouse model. Inflammatory markers were measured in the serum and levels of inflammatory proteins in myocardial cells were investigated after treatment with berberine. In addition, the apoptosis of myocardial cells was investigated after berberine treatment. Apoptosis-associated gene expression levels and apoptotic signaling pathways were analyzed in myocardial cells after treatment with berberine. The phosphoinositide 3-kinase (PI3K)/RAC-α serine/threonine-protein kinase (AKT) and nuclear factor (NF)-κB signaling pathways were also analyzed in myocardial cells after treatment with berberine. Histological analysis was used to analyze the potential benefits of berberine in ischemia-reperfusion injury. The present study identified that inflammatory responses and inflammatory factors were decreased in the myocardial cells of the mouse model of ischemia-reperfusion injury. Mechanism analysis demonstrated that berberine inhibited apoptotic protease-activating factor 1, caspase-3 and caspase-9 expression in myocardial cells. The expression of Bcl2-associated agonist of cell death, Bcl-2-like protein 1 and cellular tumor antigen p53 was upregulated. Expression of NF-κB p65, inhibitor of NF-κB kinase subunit β (IKK-β), NF-κB inhibitor α (IκBα), and NF-κB activity, were inhibited in myocardial cells in the mouse model of ischemia-reperfusion injury. In conclusion, the results of the present study indicate that berberine inhibits inflammatory responses through the NF-κB signaling pathway and suppresses the apoptosis of myocardial cells via the PI3K/AKT signaling pathway in a mouse model of ischemia-reperfusion injury. These results suggest that berberine is a potential drug for the treatment of patients with ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Lixin Wang
- Department of Cardiovascular Surgery, The General Hospital of The Chinese People's Armed Police Forces, Beijing 100039, P.R. China
| | - Hao Ma
- Department of Cardiovascular Surgery, The General Hospital of The Chinese People's Armed Police Forces, Beijing 100039, P.R. China
| | - Yan Xue
- Department of Cardiovascular Surgery, The General Hospital of The Chinese People's Armed Police Forces, Beijing 100039, P.R. China
| | - Haiyan Shi
- Department of Cardiovascular Surgery, The General Hospital of The Chinese People's Armed Police Forces, Beijing 100039, P.R. China
| | - Teng Ma
- Department of Cardiovascular Surgery, The General Hospital of The Chinese People's Armed Police Forces, Beijing 100039, P.R. China
| | - Xiaozheng Cui
- Department of Cardiovascular Surgery, The General Hospital of The Chinese People's Armed Police Forces, Beijing 100039, P.R. China
| |
Collapse
|