1
|
Zhang Y, Mou Y, Chen M, Lin X, Zhao Y, Luo X. Binary split fluorescent biosensor based on lettuce DNA aptamer for label-free and enzyme-free analysis of hepatitis B viral DNA. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4561-4569. [PMID: 38912590 DOI: 10.1039/d4ay00713a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Hepatitis B virus (HBV) acts as a severe public health threat, causing chronic liver diseases. Although the quantified evaluation of HBV infection can be obtained by estimating the capacity of the HBV DNA genome, it still lacks an effective and robust detection method without using enzymes or chemical labeling. Herein, we have designed a binary split fluorescent DNA aptasensor (bsFDA) by rationally splitting the lettuce aptamer into two functional DNA short chains and utilizing the HBV DNA segment complementary sequences (HDs). In this strategy, the bsFDA has been investigated to specifically recognize the HDs, forming a triplex DNA with the lettuce aptamer structure. Meanwhile, the turn-on fluorescence of bsFDA is obtained upon formation of a fluorescent complex between DFHO and the triplex DNA structure, allowing the enzyme-free, label-free, fast-responsive, and reliable fluorescence readout for detecting HDs and the potential HDs mutants. Moreover, bsFDA has been applied for spiked HDs analysis in different real matrixes, including human serum and cell lysate. The satisfactory recovery rates and reproducibility of the bsFDA reveal its potential detection efficacy for HDs analysis in biological samples. Overall, bsFDA holds great potential in developing functionalized aptasensors and realizing viral genome analysis in biological research.
Collapse
Affiliation(s)
- Yanfei Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Yue Mou
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Meiyun Chen
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Xinru Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Yujie Zhao
- Medical College, Guangxi University, Nanning 530004, P. R. China.
| | - Xingyu Luo
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| |
Collapse
|
2
|
Imbriano A, Tricase A, Macchia E, Torsi L, Bollella P. Self-powered logically operated fluorescent detection of hepatitis B virus (HBV). Anal Chim Acta 2023; 1252:341037. [PMID: 36935148 DOI: 10.1016/j.aca.2023.341037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
In this study, a novel sensing strategy based on double sensing/actuating pathway is demonstrated, being capable to trigger the DNA-based AND gate for the sensitive and selective detection of hepatitis B virus DNA (HBV-DNA). Such an approach encompasses an enzymatic machinery logically operated using the variation of physiologically relevant biomarkers for liver dysfunctions. Alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) are used as inputs of an AND gate generating an output signal, namely lactate. In particular, lactate is oxidized back to pyruvate at the anodic electrode by lactate oxidase connected in mediated electron transfer through ferrocene moieties (creating an amplifying recycling mechanism). The anodic electrode is further connected with a Myrothecium verrucaria bilirubin oxidase (MvBOx) based biocathode modified with SiO2 nanoparticles (SiO2NPs) functionalized with phenyl boronic acid and trigonelline, triggering the release of quenching DNA (qDNA) upon local pH change at the electrode surface (notably, modified SiONPs gets negatively recharged upon local pH gradient releasing negatively charged DNA). Next, the released qDNA labeled with BHQ2 and detecting DNA (dDNA, labeled with FAM) are detecting HBV-DNA. The proposed biosensor can discriminate between the absence and presence of HBV-DNA setting the threshold at 0.05 fM in model buffer solutions and 1 fM in human serum. This enzymatic/DNA logic network can be of particular interest for future biomedical applications (e.g., early detection of liver cancer disease etc.). In the future development this technology could be easily integrated with a smartphone camera, allowing more user-friendly applications.
Collapse
Affiliation(s)
- Anna Imbriano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy; Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy
| | - Angelo Tricase
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy
| | - Eleonora Macchia
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy; Faculty of Science and Engineering, Åbo Akademi University, 20500, Turku, Finland
| | - Luisa Torsi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy; Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy; Faculty of Science and Engineering, Åbo Akademi University, 20500, Turku, Finland
| | - Paolo Bollella
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy; Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy.
| |
Collapse
|
3
|
Ganova-Raeva LM, Khudyakov YE. Application of mass spectrometry to molecular diagnostics of viral infections. Expert Rev Mol Diagn 2013; 13:377-88. [PMID: 23638820 DOI: 10.1586/erm.13.24] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Mass spectrometry (MS) has found numerous applications in life sciences. It has high accuracy, sensitivity and wide dynamic range in addition to medium- to high-throughput capabilities. These features make MS a superior platform for analysis of various biomolecules including proteins, lipids, nucleic acids and carbohydrates. Until recently, MS was applied for protein detection and characterization. During the last decade, however, MS has successfully been used for molecular diagnostics of microbial and viral infections with the most notable applications being identification of pathogens, genomic sequencing, mutation detection, DNA methylation analysis, tracking of transmissions, and characterization of genetic heterogeneity. These new developments vastly expand the MS application from experimental research to public health and clinical fields. Matching of molecular techniques with specific requirements of the major MS platforms has produced powerful technologies for molecular diagnostics, which will further benefit from coupling with computational tools for extracting clinical information from MS-derived data.
Collapse
Affiliation(s)
- Lilia M Ganova-Raeva
- Centers for Disease Control and Prevention, Division of Viral Hepatitis, 1600 Clifton Rd. NE, MS A-33, Atlanta, GA 30329, USA.
| | | |
Collapse
|
4
|
Jordana-Lluch E, Martró Català E, Ausina Ruiz V. [Mass spectrometry in the clinical microbiology laboratory]. Enferm Infecc Microbiol Clin 2012; 30:635-44. [PMID: 22381225 PMCID: PMC7103318 DOI: 10.1016/j.eimc.2012.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/23/2011] [Accepted: 01/04/2012] [Indexed: 11/30/2022]
Abstract
Infectious diseases are still a cause of high mortality and morbidity rates. Current microbiological diagnostic methods are based on culture and phenotypic identification of isolated microorganisms, which can be obtained in about 24-48 h. Given that the microbiological identification is of major importance for patient management, new diagnostic methods are needed in order to detect and identify microorganisms in a timely and accurate manner. Over the last few years, several molecular techniques based on the amplification of microbial nucleic acids have been developed with the aim of reducing the time needed for the identification of the microorganisms involved in different infectious processes. On the other hand, mass spectrometry has emerged as a rapid and consistent alternative to conventional methods for microorganism identification. This review describes the most widely used mass spectrometry technologies -matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and electrospray ionization time-of-flight (ESI-TOF)-, both for protein and nucleic acid analysis, as well as the commercial platforms available. Related publications of most interest in clinical microbiology are also reviewed.
Collapse
Affiliation(s)
- Elena Jordana-Lluch
- Servicio de Microbiología, Fundación Instituto de Investigación en Ciencias de la Salud Germans Trias y Pujol, Hospital Universitario Germans Trias y Pujol, Universidad Autónoma de Barcelona, Badalona, Barcelona, España
| | - Elisa Martró Català
- Servicio de Microbiología, Fundación Instituto de Investigación en Ciencias de la Salud Germans Trias y Pujol, Hospital Universitario Germans Trias y Pujol, Universidad Autónoma de Barcelona, Badalona, Barcelona, España
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, España
| | - Vicente Ausina Ruiz
- Servicio de Microbiología, Fundación Instituto de Investigación en Ciencias de la Salud Germans Trias y Pujol, Hospital Universitario Germans Trias y Pujol, Universidad Autónoma de Barcelona, Badalona, Barcelona, España
- CIBER Enfermedades Respiratorias (CIBERES), Bunyola, Mallorca, España
| |
Collapse
|
5
|
Naidu H, Subramanian BM, Chinchkar SR, Sriraman R, Rana SK, Srinivasan V. Typing of canine parvovirus isolates using mini-sequencing based single nucleotide polymorphism analysis. J Virol Methods 2012; 181:197-201. [DOI: 10.1016/j.jviromet.2012.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/31/2012] [Accepted: 02/13/2012] [Indexed: 10/28/2022]
|
6
|
Ho YP, Reddy PM. Advances in mass spectrometry for the identification of pathogens. MASS SPECTROMETRY REVIEWS 2011; 30:1203-24. [PMID: 21557290 PMCID: PMC7168406 DOI: 10.1002/mas.20320] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 08/06/2010] [Accepted: 08/06/2010] [Indexed: 05/25/2023]
Abstract
Mass spectrometry (MS) has become an important technique to identify microbial biomarkers. The rapid and accurate MS identification of microorganisms without any extensive pretreatment of samples is now possible. This review summarizes MS methods that are currently utilized in microbial analyses. Affinity methods are effective to clean, enrich, and investigate microorganisms from complex matrices. Functionalized magnetic nanoparticles might concentrate traces of target microorganisms from sample solutions. Therefore, nanoparticle-based techniques have a favorable detection limit. MS coupled with various chromatographic techniques, such as liquid chromatography and capillary electrophoresis, reduces the complexity of microbial biomarkers and yields reliable results. The direct analysis of whole pathogenic microbial cells with matrix-assisted laser desorption/ionization MS without sample separation reveals specific biomarkers for taxonomy, and has the advantages of simplicity, rapidity, and high-throughput measurements. The MS detection of polymerase chain reaction (PCR)-amplified microbial nucleic acids provides an alternative to biomarker analysis. This review will conclude with some current applications of MS in the identification of pathogens.
Collapse
Affiliation(s)
- Yen-Peng Ho
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan.
| | | |
Collapse
|
7
|
Abstract
Genotyping of hepatitis B virus (HBV) is important for tracking HBV infections, prognosticating the development of severe liver disease, and predicting outcomes of therapy. Current genotyping methods can be laborious and costly and rely on subjective data interpretation. To identify less expensive but equally reliable alternatives, we compared "gold standard" sequencing to a novel mass spectrometry approach. Sera from individuals with acute or chronic HBV infection (n = 756), representing all genotypes, were used to PCR amplify the HBV S gene. All amplicons were subjected to base-specific cleavage and matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS). The resulting mass peak patterns were used to identify HBV genotype by automated comparison to peak patterns simulated from reference sets of HBV sequences of known genotypes. The MALDI-TOF MS data and phylogenetic analysis of HBV sequences produced completely concordant results. Several parameters such as genetic relatedness of tested HBV variants to the reference set, chronic infections, and the quality of PCR products can lower the MS score but never affected the accuracy of the genotype call. This new streamlined MS-based method provides for rapid and accurate HBV genotyping, produces automated data reports, and is therefore suitable for routine use in diagnostic settings.
Collapse
|