1
|
Chaplygina AV, Zhdanova DY, Kovalev VI, Poltavtseva RA, Medvinskaya NI, Bobkova NV. Cell Therapy as a Way to Correct Impaired Neurogenesis in the Adult Brain in a Model of Alzheimer’s Disease. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2
|
Bobkova NV, Poltavtseva RA, Leonov SV, Sukhikh GT. Neuroregeneration: Regulation in Neurodegenerative Diseases and Aging. BIOCHEMISTRY (MOSCOW) 2020; 85:S108-S130. [PMID: 32087056 DOI: 10.1134/s0006297920140060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It had been commonly believed for a long time, that once established, degeneration of the central nervous system (CNS) is irreparable, and that adult person merely cannot restore dead or injured neurons. The existence of stem cells (SCs) in the mature brain, an organ with minimal regenerative ability, had been ignored for many years. Currently accepted that specific structures of the adult brain contain neural SCs (NSCs) that can self-renew and generate terminally differentiated brain cells, including neurons and glia. However, their contribution to the regulation of brain activity and brain regeneration in natural aging and pathology is still a subject of ongoing studies. Since the 1970s, when Fuad Lechin suggested the existence of repair mechanisms in the brain, new exhilarating data from scientists around the world have expanded our knowledge on the mechanisms implicated in the generation of various cell phenotypes supporting the brain, regulation of brain activity by these newly generated cells, and participation of SCs in brain homeostasis and regeneration. The prospects of the SC research are truthfully infinite and hitherto challenging to forecast. Once researchers resolve the issues regarding SC expansion and maintenance, the implementation of the SC-based platform could help to treat tissues and organs impaired or damaged in many devastating human diseases. Over the past 10 years, the number of studies on SCs has increased exponentially, and we have already become witnesses of crucial discoveries in SC biology. Comprehension of the mechanisms of neurogenesis regulation is essential for the development of new therapeutic approaches for currently incurable neurodegenerative diseases and neuroblastomas. In this review, we present the latest achievements in this fast-moving field and discuss essential aspects of NSC biology, including SC regulation by hormones, neurotransmitters, and transcription factors, along with the achievements of genetic and chemical reprogramming for the safe use of SCs in vitro and in vivo.
Collapse
Affiliation(s)
- N V Bobkova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - R A Poltavtseva
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia. .,National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov, Ministry of Healthcare of Russian Federation, Moscow, 117997, Russia
| | - S V Leonov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia. .,Moscow Institute of Physics and Technology (National Research University), The Phystech School of Biological and Medical Physics, Dolgoprudny, Moscow Region, 141700, Russia
| | - G T Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov, Ministry of Healthcare of Russian Federation, Moscow, 117997, Russia.
| |
Collapse
|
3
|
Poltavtseva RA, Samokhin AN, Bobkova NV, Alexandrova MA, Sukhikh GT. Effect of Transplantation of Neural Stem and Progenitor Cells on Memory in Animals with Alzheimer's Type Neurodegeneration. Bull Exp Biol Med 2020; 168:589-596. [PMID: 32152851 DOI: 10.1007/s10517-020-04758-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Indexed: 12/14/2022]
Abstract
The effects of systemic and intracerebral transplantation of human fetal neural stem and progenitor cells were studied on the model of olfactory bulbectomy in mice with developing signs of sporadic Alzheimer's disease. It was found that transplantation of these cells at certain stages of disease development contributed to improvement of spatial memory and preservation of hippocampal neurons in these animals.
Collapse
Affiliation(s)
- R A Poltavtseva
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - A N Samokhin
- Institute of Cell Biophysics, Federal research Center Pushchino Research Center of Biological Studies, Russian Academy of Science, Pushchino, Moscow region, Russia
| | - N V Bobkova
- Institute of Cell Biophysics, Federal research Center Pushchino Research Center of Biological Studies, Russian Academy of Science, Pushchino, Moscow region, Russia
| | - M A Alexandrova
- N. K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - G T Sukhikh
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
4
|
Park KR, Hwang CJ, Yun HM, Yeo IJ, Choi DY, Park PH, Kim HS, Lee JT, Jung YS, Han SB, Hong JT. Prevention of multiple system atrophy using human bone marrow-derived mesenchymal stem cells by reducing polyamine and cholesterol-induced neural damages. Stem Cell Res Ther 2020; 11:63. [PMID: 32127052 PMCID: PMC7055099 DOI: 10.1186/s13287-020-01590-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/11/2020] [Accepted: 02/06/2020] [Indexed: 11/17/2022] Open
Abstract
Background Multiple system atrophy (MSA) is a sporadic neurodegenerative disorder of unknown etiology, but is closely associated with damage to dopaminergic neurons. MSA progression is rapid. Hence, long-term drug treatments do not have any therapeutic benefits. We assessed the inhibitory effect of mesenchymal stem cells (MSCs) on double-toxin-induced dopaminergic neurodegenerative MSA. Results Behavioral disorder was significantly improved and neurodegeneration was prevented following MSC transplantation. Proteomics revealed lower expression of polyamine modulating factor-binding protein 1 (PMFBP1) and higher expression of 3-hydroxymethyl-3-methylglutaryl-CoA lyase (HMGCL), but these changes were reversed after MSC transplantation. In the in vitro study, the 6-OHDA-induced effects were reversed following co-culture with MSC. However, PMFBP1 knockdown inhibited the recovery effect due to the MSCs. Furthermore, HMGCL expression was decreased following co-culture with MSCs, but treatment with recombinant HMGCL protein inhibited the recovery effects due to MSCs. Conclusions These data indicate that MSCs protected against neuronal loss in MSA by reducing polyamine- and cholesterol-induced neural damage.
Collapse
Affiliation(s)
- Kyung-Ran Park
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul, 02453, Republic of Korea
| | - Chul Ju Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsangmyeong1-ro, Heungdeok-gu, Cheongju, Chungbuk, 361-951, Republic of Korea
| | - Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul, 02453, Republic of Korea
| | - In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsangmyeong1-ro, Heungdeok-gu, Cheongju, Chungbuk, 361-951, Republic of Korea
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, 280, Daehak-ro, Gyeongsan, Gyeongbuk, 712-749, Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, 280, Daehak-ro, Gyeongsan, Gyeongbuk, 712-749, Republic of Korea
| | - Hyung Sook Kim
- Corestem Inc, Pangyo-ro 255 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi, 13486, Republic of Korea
| | - Jung Tae Lee
- Corestem Inc, Pangyo-ro 255 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi, 13486, Republic of Korea
| | - Young Suk Jung
- College of Pharmacy, Pusan National University, Geumjeong-gu, Busan, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsangmyeong1-ro, Heungdeok-gu, Cheongju, Chungbuk, 361-951, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsangmyeong1-ro, Heungdeok-gu, Cheongju, Chungbuk, 361-951, Republic of Korea.
| |
Collapse
|
5
|
Salem H, Rocha NP, Colpo GD, Teixeira AL. Moving from the Dish to the Clinical Practice: A Decade of Lessons and Perspectives from the Pre-Clinical and Clinical Stem Cell Studies for Alzheimer’s Disease. J Alzheimers Dis 2016; 53:1209-30. [DOI: 10.3233/jad-160250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Haitham Salem
- Department of Psychiatry and Behavioral Sciences, Neuropsychiatry Program, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
- Regenerative Medicine Program, University of Lübeck, Schleswig-Holstein, Germany
| | - Natalia Pessoa Rocha
- Department of Psychiatry and Behavioral Sciences, Neuropsychiatry Program, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
| | - Gabriela Delevati Colpo
- Department of Psychiatry and Behavioral Sciences, Neuropsychiatry Program, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
| | - Antonio Lucio Teixeira
- Department of Psychiatry and Behavioral Sciences, Neuropsychiatry Program, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
6
|
Ruzicka J, Kulijewicz-Nawrot M, Rodrigez-Arellano JJ, Jendelova P, Sykova E. Mesenchymal Stem Cells Preserve Working Memory in the 3xTg-AD Mouse Model of Alzheimer's Disease. Int J Mol Sci 2016; 17:ijms17020152. [PMID: 26821012 PMCID: PMC4783886 DOI: 10.3390/ijms17020152] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/12/2016] [Accepted: 01/20/2016] [Indexed: 12/26/2022] Open
Abstract
The transplantation of stem cells may have a therapeutic effect on the pathogenesis and progression of neurodegenerative disorders. In the present study, we transplanted human mesenchymal stem cells (MSCs) into the lateral ventricle of a triple transgenic mouse model of Alzheimer´s disease (3xTg-AD) at the age of eight months. We evaluated spatial reference and working memory after MSC treatment and the possible underlying mechanisms, such as the influence of transplanted MSCs on neurogenesis in the subventricular zone (SVZ) and the expression levels of a 56 kDa oligomer of amyloid β (Aβ*56), glutamine synthetase (GS) and glutamate transporters (Glutamate aspartate transporter (GLAST) and Glutamate transporter-1 (GLT-1)) in the entorhinal and prefrontal cortices and the hippocampus. At 14 months of age we observed the preservation of working memory in MSC-treated 3xTg-AD mice, suggesting that such preservation might be due to the protective effect of MSCs on GS levels and the considerable downregulation of Aβ*56 levels in the entorhinal cortex. These changes were observed six months after transplantation, accompanied by clusters of proliferating cells in the SVZ. Since the grafted cells did not survive for the whole experimental period, it is likely that the observed effects could have been transiently more pronounced at earlier time points than at six months after cell application.
Collapse
Affiliation(s)
- Jiri Ruzicka
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic.
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Prague 150 06, Czech Republic.
| | - Magdalena Kulijewicz-Nawrot
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic.
| | - Jose Julio Rodrigez-Arellano
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic.
- Functional Neuroanatomy Laboratory, Department of Neuroscience, Faculty of Medicine, the University of the Basque Country, 48940 Leioa, Spain.
| | - Pavla Jendelova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic.
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Prague 150 06, Czech Republic.
| | - Eva Sykova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic.
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Prague 150 06, Czech Republic.
| |
Collapse
|
7
|
Kanninen KM, Pomeshchik Y, Leinonen H, Malm T, Koistinaho J, Levonen AL. Applications of the Keap1-Nrf2 system for gene and cell therapy. Free Radic Biol Med 2015; 88:350-361. [PMID: 26164630 DOI: 10.1016/j.freeradbiomed.2015.06.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/23/2015] [Accepted: 06/27/2015] [Indexed: 01/15/2023]
Abstract
Oxidative stress has been implicated to play a role in a number of acute and chronic diseases including acute injuries of the central nervous system, neurodegenerative and cardiovascular diseases, and cancer. The redox-activated transcription factor Nrf2 has been shown to protect many different cell types and organs from a variety of toxic insults, whereas in many cancers, unchecked Nrf2 activity increases the expression of cytoprotective genes and, consequently, provides growth advantage to cancerous cells. Herein, we discuss current preclinical gene therapy approaches to either increase or decrease Nrf2 activity with a special reference to neurological diseases and cancer. In addition, we discuss the role of Nrf2 in stem cell therapy for neurological disorders.
Collapse
Affiliation(s)
- Katja M Kanninen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Yuriy Pomeshchik
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Hanna Leinonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Tarja Malm
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Jari Koistinaho
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland.
| | - Anna-Liisa Levonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland.
| |
Collapse
|
8
|
Effects of stem cell transplantation on cognitive decline in animal models of Alzheimer's disease: A systematic review and meta-analysis. Sci Rep 2015; 5:12134. [PMID: 26159750 PMCID: PMC4498325 DOI: 10.1038/srep12134] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 06/17/2015] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD), an irreversible progressive neurodegenerative disease, causes characteristic cognitive impairment, and no curative treatments are currently available. Stem cell transplantation offers a powerful tool for the treatment of AD. We conducted a systematic review and meta-analysis of data from controlled studies to study the impact of stem cell biology and experimental design on learning and memory function following stem cell transplantation in animal models of AD. A total of 58 eligible controlled studies were included by searching PubMed, EMBASE, and Web of Science up to April 13, 2015. Meta-analysis showed that stem cell transplantation could promote both learning and memory recovery. Stratified meta-analysis was used to explore the influence of the potential factors on the estimated effect size, and meta-regression analyses were undertaken to explore the sources of heterogeneity for learning and memory function. Publication bias was assessed using funnel plots and Egger’s test. The present review reinforces the evidence supporting stem cell transplantation in experimental AD. However, it highlights areas that require well-designed and well-reported animal studies.
Collapse
|
9
|
Localization and Differentiation Pattern of Transplanted Human Multipotent Mesenchymal Stromal Cells in the Brain of Bulbectomized Mice. Bull Exp Biol Med 2014; 158:118-22. [DOI: 10.1007/s10517-014-2706-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Indexed: 12/21/2022]
|