1
|
Zhang C, Morozova AY, Abakumov MA, Mel'nikov PA, Gabashvili AN, Chekhonin VP. Evaluation of the Optimal Number of Implanted Mesenchymal Stem Cells for the Treatment of Post-Traumatic Syrinx and Recovery of Motor Activity after Chronic Spinal Cord Injury. Bull Exp Biol Med 2023; 175:557-568. [PMID: 37773573 DOI: 10.1007/s10517-023-05904-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Indexed: 10/01/2023]
Abstract
The present work aims at determining the most effective dose (number) of mesenchymal stem cells (MSC) for its transplantation in order to treat chronic spinal cord injury (SCI) in mature Sprague-Dawley rats (n=24). MSC were obtained from bone marrow of 4-6-month-old Sprague-Dawley rats. Four weeks after SCI, MSC suspension (4 μl) was injected to experimental animals into the injured area in doses of 4×105, 8×105, or 106. Using MRI, diffusion tensor imaging (DTI), diffusion tensor tractography (DTT), immunohistochemistry, histological staining, and behavioral tests, we studied the effect of transplantation of MSC in different doses on the following parameters in rats with SCI: the size of lesion cavity and post-traumatic syrinx (PTS), glial scar formation, neuronal fibers remodeling, axonal regeneration and sprouting, vascularization, expression of neuronal factors, and motor functions. MSC administration improved motor function in rats after SCI due to stimulation of regeneration and sprouting of the axons, enhanced recovery of locomotor functions, reduction of PTS and the glial scar, and stimulation of vascularization and expression of the neurotrophic factors. The effects of MSC were dose-dependent; the most effective dose was 106 cells.
Collapse
Affiliation(s)
- C Zhang
- Department of Medicinal Nanobiotechnology, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia.
- Department of Basic and Applied Neurobiology, V. P. Serbsky National Medical Research Center for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - A Yu Morozova
- Department of Basic and Applied Neurobiology, V. P. Serbsky National Medical Research Center for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - M A Abakumov
- Department of Medicinal Nanobiotechnology, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - P A Mel'nikov
- Department of Medicinal Nanobiotechnology, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A N Gabashvili
- Department of Medicinal Nanobiotechnology, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V P Chekhonin
- Department of Medicinal Nanobiotechnology, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Basic and Applied Neurobiology, V. P. Serbsky National Medical Research Center for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
2
|
Shao Q, Esseltine JL, Huang T, Novielli-Kuntz N, Ching JE, Sampson J, Laird DW. Connexin43 is Dispensable for Early Stage Human Mesenchymal Stem Cell Adipogenic Differentiation But is Protective against Cell Senescence. Biomolecules 2019; 9:E474. [PMID: 31514306 PMCID: PMC6770901 DOI: 10.3390/biom9090474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023] Open
Abstract
In the last couple of decades, there has been a growing optimism surrounding the potential transformative use of human mesenchymal stem cells (MSCs) and human-induced pluripotent stem cells (iPSCs) for regenerative medicine and disease treatment. In order for this to occur, it is first essential to understand the mechanisms underpinning their cell-fate specification, which includes cell signaling via gap junctional intercellular communication. Here, we investigated the role of the prototypical gap junction protein, connexin43 (Cx43), in governing the differentiation of iPSCs into MSCs and MSC differentiation along the adipogenic lineage. We found that control iPSCs, as well as iPSCs derived from oculodentodigital dysplasia patient fibroblasts harboring a GJA1 (Cx43) gene mutation, successfully and efficiently differentiated into LipidTox and perilipin-positive cells, indicating cell differentiation along the adipogenic lineage. Furthermore, the complete CRISPR-Cas9 ablation of Cx43 from iPSCs did not prevent their differentiation into bona fide MSCs or pre-adipocytes, strongly suggesting that even though Cx43 expression is upregulated during adipogenesis, it is expendable. Interestingly, late passage Cx43-ablated MSCs senesced more quickly than control cells, resulting in failure to properly differentiate in vitro. We conclude that despite being upregulated during adipogenesis, Cx43 plays no detectable role in the early stages of human iPSC-derived MSC adipogenic differentiation. However, Cx43 may play a more impactful role in protecting MSCs from premature senescence.
Collapse
Affiliation(s)
- Qing Shao
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Jessica L Esseltine
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada.
| | - Tao Huang
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
- Department of Pathology, Shenyang Medical College, Shenyang 110034, China.
| | - Nicole Novielli-Kuntz
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Jamie E Ching
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Jacinda Sampson
- Department of Neurology, Stanford University Medical Center, Palo Alto, CA 94304, USA.
| | - Dale W Laird
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
3
|
Bryukhovetskiy I, Ponomarenko A, Lyakhova I, Zaitsev S, Zayats Y, Korneyko M, Eliseikina M, Mischenko P, Shevchenko V, Shanker Sharma H, Sharma A, Khotimchenko Y. Personalized regulation of glioblastoma cancer stem cells based on biomedical technologies: From theory to experiment (Review). Int J Mol Med 2018; 42:691-702. [PMID: 29749540 PMCID: PMC6034919 DOI: 10.3892/ijmm.2018.3668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/02/2018] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive brain tumors. GBM represents >50% of primary tumors of the nervous system and ~20% of intracranial neoplasms. Standard treatment involves surgery, radiation and chemotherapy. However, the prognosis of GBM is usually poor, with a median survival of 15 months. Resistance of GBM to treatment can be explained by the presence of cancer stem cells (CSCs) among the GBM cell population. At present, there are no effective therapeutic strategies for the elimination of CSCs. The present review examined the nature of human GBM therapeutic resistance and attempted to systematize and put forward novel approaches for a personalized therapy of GBM that not only destroys tumor tissue, but also regulates cellular signaling and the morphogenetic properties of CSCs. The CSCs are considered to be an informationally accessible living system, and the CSC proteome should be used as a target for therapy directed at suppressing clonal selection mechanisms and CSC generation, destroying CSC hierarchy, and disrupting the interaction of CSCs with their microenvironment and extracellular matrix. These objectives can be achieved through the use of biomedical cellular products.
Collapse
Affiliation(s)
| | | | - Irina Lyakhova
- Far Eastern Federal University, Vladivostok 690091, Russia
| | - Sergey Zaitsev
- Far Eastern Federal University, Vladivostok 690091, Russia
| | - Yulia Zayats
- Far Eastern Federal University, Vladivostok 690091, Russia
| | - Maria Korneyko
- Far Eastern Federal University, Vladivostok 690091, Russia
| | - Marina Eliseikina
- National Scientific Center of Marine Biology of Far Eastern Branch of The Russian Academy of Sciences, Vladivostok 690059, Russia
| | | | | | - Hari Shanker Sharma
- International Experimental CNS Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, Uppsala SE‑75185, Sweden
| | - Aruna Sharma
- International Experimental CNS Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, Uppsala SE‑75185, Sweden
| | | |
Collapse
|
4
|
Gabashvili AN, Baklaushev VP, Grinenko NF, Mel'nikov PA, Cherepanov SA, Levinsky AB, Chehonin VP. Antitumor Activity of Rat Mesenchymal Stem Cells during Direct or Indirect Co-Culturing with C6 Glioma Cells. Bull Exp Biol Med 2016; 160:519-24. [PMID: 26902362 DOI: 10.1007/s10517-016-3211-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Indexed: 10/22/2022]
Abstract
The tumor-suppressive effect of rat mesenchymal stem cells against low-differentiated rat C6 glioma cells during their direct and indirect co-culturing and during culturing of C6 glioma cells in the medium conditioned by mesenchymal stem cells was studied in an in vitro experiment. The most pronounced antitumor activity of mesenchymal stem cells was observed during direct co-culturing with C6 glioma cells. The number of live C6 glioma cells during indirect co-culturing and during culturing in conditioned medium was slightly higher than during direct co-culturing, but significantly differed from the control (C6 glioma cells cultured in medium conditioned by C6 glioma cells). The cytotoxic effect of medium conditioned by mesenchymal stem cells was not related to medium depletion by glioma cells during their growth. The medium conditioned by other "non-stem" cells (rat astrocytes and fibroblasts) produced no tumor-suppressive effect. Rat mesenchymal stem cells, similar to rat C6 glioma cells express connexin 43, the main astroglial gap junction protein. During co-culturing, mesenchymal stem cells and glioma C6 cells formed functionally active gap junctions. Gap junction blockade with connexon inhibitor carbenoxolone attenuated the antitumor effect observed during direct co-culturing of C6 glioma cells and mesenchymal stem cells to the level produced by conditioned medium. Cell-cell signaling mediated by gap junctions can be a mechanism of the tumor-suppressive effect of mesenchymal stem cells against C6 glioma cells. This phenomenon can be used for the development of new methods of cell therapy for high-grade malignant gliomas.
Collapse
Affiliation(s)
- A N Gabashvili
- Department of Medical Nanobiotechnologies, Medico-Biological Faculty, N. I. Pirogov National Research Medical University, Moscow, Russia.
| | - V P Baklaushev
- Department of Medical Nanobiotechnologies, Medico-Biological Faculty, N. I. Pirogov National Research Medical University, Moscow, Russia.,Federal Research-and-Clinical Center, Federal Medico-Biological Agency, Moscow, Russia
| | - N F Grinenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky Federal Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - P A Mel'nikov
- Department of Medical Nanobiotechnologies, Medico-Biological Faculty, N. I. Pirogov National Research Medical University, Moscow, Russia
| | - S A Cherepanov
- Department of Medical Nanobiotechnologies, Medico-Biological Faculty, N. I. Pirogov National Research Medical University, Moscow, Russia
| | - A B Levinsky
- Department of Medical Nanobiotechnologies, Medico-Biological Faculty, N. I. Pirogov National Research Medical University, Moscow, Russia
| | - V P Chehonin
- Department of Medical Nanobiotechnologies, Medico-Biological Faculty, N. I. Pirogov National Research Medical University, Moscow, Russia.,Department of Fundamental and Applied Neurobiology, V. P. Serbsky Federal Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
5
|
Kong H, Liu X, Yang L, Qi K, Zhang H, Zhang J, Huang Z, Wang H. All-trans retinoic acid enhances bystander effect of suicide gene therapy in the treatment of breast cancer. Oncol Rep 2015; 35:1868-74. [PMID: 26717879 DOI: 10.3892/or.2015.4535] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 11/24/2015] [Indexed: 11/05/2022] Open
Abstract
All-trans retinoic acid (ATRA) has been shown to enhance the expression of connexin 43 (Cx43) and the bystander effect (BSE) in suicide gene therapy. These in turn improve effects of suicide gene therapies for several tumor types. However, whether ATRA can improve BSE remains unclear in suicide gene therapy for breast cancer. In the present study, MCF-7, human breast cancer cells were treated with ATRA in combination with a VEGFP-TK/CD gene suicide system developed by our group. We found that this combination enhances the efficiency of cell killing and apoptosis of breast cancer by strengthening the BSE in vitro. ATRA also promotes gap junction intercellular communication (GJIC) in MCF-7 cells by upregulation of the connexin 43 mRNA and protein in MCF-7 cells. These results indicate that enhancement of GJIC by ATRA in suicide gene system might serve as an attractive and cost-effective strategy of therapy for breast cancer cells.
Collapse
Affiliation(s)
- Heng Kong
- Department of Thyroid and Breast Surgery, Shenzhen Key Laboratory for Endogenous Infection, Shenzhen Nanshan District People's Hospital (The Sixth People's Hospital of Shenzhen), Shenzhen, Guangdong 518052, P.R. China
| | - Xia Liu
- Department of Human Resource, Shenzhen Nanshan District People's Hospital, Shenzhen, Guangdong 518052, P.R. China
| | - Liucheng Yang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Ke Qi
- Department of Thyroid and Breast Surgery, Shenzhen Key Laboratory for Endogenous Infection, Shenzhen Nanshan District People's Hospital (The Sixth People's Hospital of Shenzhen), Shenzhen, Guangdong 518052, P.R. China
| | - Haoyun Zhang
- Department of Thyroid and Breast Surgery, Shenzhen Key Laboratory for Endogenous Infection, Shenzhen Nanshan District People's Hospital (The Sixth People's Hospital of Shenzhen), Shenzhen, Guangdong 518052, P.R. China
| | - Jingwen Zhang
- Clinical Laboratory, Shenzhen Nanshan District People's Hospital, Shenzhen, Guangdong 518052, P.R. China
| | - Zonghai Huang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Hongxian Wang
- Department of Thyroid and Breast Surgery, Shenzhen Key Laboratory for Endogenous Infection, Shenzhen Nanshan District People's Hospital (The Sixth People's Hospital of Shenzhen), Shenzhen, Guangdong 518052, P.R. China
| |
Collapse
|