1
|
Gao Y, Li D, Lin J, Thomas AM, Miao J, Chen D, Li S, Chu C. Cerebral small vessel disease: Pathological mechanisms and potential therapeutic targets. Front Aging Neurosci 2022; 14:961661. [PMID: 36034144 PMCID: PMC9412755 DOI: 10.3389/fnagi.2022.961661] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral small vessel disease (CSVD) represents a diverse cluster of cerebrovascular diseases primarily affecting small arteries, capillaries, arterioles and venules. The diagnosis of CSVD relies on the identification of small subcortical infarcts, lacunes, white matter hyperintensities, perivascular spaces, and microbleeds using neuroimaging. CSVD is observed in 25% of strokes worldwide and is the most common pathology of cognitive decline and dementia in the elderly. Still, due to the poor understanding of pathophysiology in CSVD, there is not an effective preventative or therapeutic approach for CSVD. The most widely accepted approach to CSVD treatment is to mitigate vascular risk factors and adopt a healthier lifestyle. Thus, a deeper understanding of pathogenesis may foster more specific therapies. Here, we review the underlying mechanisms of pathological characteristics in CSVD development, with a focus on endothelial dysfunction, blood-brain barrier impairment and white matter change. We also describe inflammation in CSVD, whose role in contributing to CSVD pathology is gaining interest. Finally, we update the current treatments and preventative measures of CSVD, as well as discuss potential targets and novel strategies for CSVD treatment.
Collapse
Affiliation(s)
- Yue Gao
- Department of Neurointervention and Neurological Intensive Care, Dalian Municipal Central Hospital, Dalian, China
| | - Di Li
- Department of Neurointervention and Neurological Intensive Care, Dalian Municipal Central Hospital, Dalian, China
| | - Jianwen Lin
- Department of Neurology, Dalian Municipal Central Hospital, Dalian, China
| | - Aline M. Thomas
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institution, Baltimore, MD, United States
| | - Jianyu Miao
- Department of Neurology, Dalian Municipal Central Hospital, Dalian, China
| | - Dong Chen
- Department of Neurosurgery, Dalian Municipal Central Hospital, Dalian, China
| | - Shen Li
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chengyan Chu
- Department of Neurology, Dalian Municipal Central Hospital, Dalian, China
- *Correspondence: Chengyan Chu,
| |
Collapse
|
2
|
Cerebral Blood Flow in SHR Rats after Transplantation of Mesenchymal Stem Cells. Bull Exp Biol Med 2019; 166:586-590. [PMID: 30783841 DOI: 10.1007/s10517-019-04396-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Indexed: 10/27/2022]
Abstract
Intracerebral transplantation of mesenchymal stem cells to 6- and 12-month-old SHR rats induced angiogenesis in the pia mater. In 6-months-old SHR rats, perfusion in the brain tissue after cell transplantation considerably increased, while in 12-month-old rats it remained practically unchanged. We also observed marked activation of regulatory processes in the cerebral vascular system, most pronounced in 12-month-old rats. Neurogenic and myogenic tone of cerebral vessels increased significantly, while endothelium-dependent tone slightly decreased. The increase in neurogenic and myogenic tone of blood vessels in SHR rats at the age of 6 and 12 months after transplantation of stem cells can be explained by the formation of new smooth muscle cells in the pre-existing arteries walls. Greater muscle mass developed stronger force and contributed to narrowing of the arterial lumen, as a result, there was no increase in blood flow despite the downstream angiogenesis. A slight decrease in endothelium-dependent tone can be explained by increased production of vasodilators by newly formed endothelial cells.
Collapse
|