1
|
Naryzhnaya NV, Maslov LN, Derkachev IA, Ma H, Zhang Y, Prasad NR, Singh N, Fu F, Pei JM, Sarybaev A, Sydykov A. The effect of adaptation to hypoxia on cardiac tolerance to ischemia/reperfusion. J Biomed Res 2022:1-25. [PMID: 37183617 PMCID: PMC10387748 DOI: 10.7555/jbr.36.20220125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The acute myocardial infarction (AMI) and sudden cardiac death (SCD), both associated with acute cardiac ischemia, are one of the leading causes of adult death in economically developed countries. The development of new approaches for the treatment and prevention of AMI and SCD remains the highest priority for medicine. A study on the cardiovascular effects of chronic hypoxia (CH) may contribute to the development of these methods. Chronic hypoxia exerts both positive and adverse effects. The positive effects are the infarct-reducing, vasoprotective, and antiarrhythmic effects, which can lead to the improvement of cardiac contractility in reperfusion. The adverse effects are pulmonary hypertension and right ventricular hypertrophy. This review presents a comprehensive overview of how CH enhances cardiac tolerance to ischemia/reperfusion. It is an in-depth analysis of the published data on the underlying mechanisms, which can lead to future development of the cardioprotective effect of CH. A better understanding of the CH-activated protective signaling pathways may contribute to new therapeutic approaches in an increase of cardiac tolerance to ischemia/reperfusion.
Collapse
|
2
|
Kohutova J, Elsnicova B, Holzerova K, Neckar J, Sebesta O, Jezkova J, Vecka M, Vebr P, Hornikova D, Szeiffova Bacova B, Egan Benova T, Hlavackova M, Tribulova N, Kolar F, Novakova O, Zurmanova JM. Anti-arrhythmic Cardiac Phenotype Elicited by Chronic Intermittent Hypoxia Is Associated With Alterations in Connexin-43 Expression, Phosphorylation, and Distribution. Front Endocrinol (Lausanne) 2018; 9:789. [PMID: 30740090 PMCID: PMC6357219 DOI: 10.3389/fendo.2018.00789] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/14/2018] [Indexed: 12/31/2022] Open
Abstract
Remodeling of the cellular distribution of gap junctions formed mainly by connexin-43 (Cx43) can be related to the increased incidence of cardiac arrhythmias. It has been shown that adaptation to chronic intermittent hypobaric hypoxia (IHH) attenuates the incidence and severity of ischemic and reperfusion ventricular arrhythmias and increases the proportion of anti-arrhythmic n-3 polyunsaturated fatty acids (n-3 PUFA) in heart phospholipids. Wistar rats were exposed to simulated IHH (7,000 m, 8-h/day, 35 exposures) and compared with normoxic controls (N). Cx43 expression, phosphorylation, localization and n-3 PUFA proportion were analyzed in left ventricular myocardium. Compared to N, IHH led to higher expression of total Cx43, its variant phosphorylated at Ser368 [p-Cx43(Ser368)], which maintains "end to end" communication, as well as p-Cx43(Ser364/365), which facilitates conductivity. By contrast, expression of non-phosphorylated Cx43 and p-Cx43(Ser278/289), attenuating intercellular communication, was lower in IHH than in N. IHH also resulted in increased expression of protein kinase A and protein kinase G while casein kinase 1 did not change compared to N. In IHH group, which exhibited reduced incidence of ischemic ventricular arrhythmias, Cx43 and p-Cx43(Ser368) were more abundant at "end to end" gap junctions than in N group and this difference was preserved after acute regional ischemia (10 min). We further confirmed higher n-3 PUFA proportion in heart phospholipids after adaptation to IHH, which was even further increased by ischemia. Our results suggest that adaptation to IHH alters expression, phosphorylation and distribution of Cx43 as well as cardioprotective n-3PUFA proportion suggesting that the anti-arrhythmic phenotype elicited by IHH can be at least partly related to the stabilization of the "end to end" conductivity between cardiomyocytes during brief ischemia.
Collapse
Affiliation(s)
- Jana Kohutova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
| | - Barbara Elsnicova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
| | - Kristyna Holzerova
- Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jan Neckar
- Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Ondrej Sebesta
- Laboratory of Confocal and Fluorescence Microscopy, Faculty of Science, Charles University, Prague, Czechia
| | - Jana Jezkova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
| | - Marek Vecka
- 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Pavel Vebr
- Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
| | - Daniela Hornikova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
| | - Barbara Szeiffova Bacova
- Center of Experimental Medicine of the Slovak Academy of Sciences, Institute for Heart Research, Bratislava, Slovakia
| | - Tamara Egan Benova
- Center of Experimental Medicine of the Slovak Academy of Sciences, Institute for Heart Research, Bratislava, Slovakia
| | - Marketa Hlavackova
- Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Narcis Tribulova
- Center of Experimental Medicine of the Slovak Academy of Sciences, Institute for Heart Research, Bratislava, Slovakia
| | - Frantisek Kolar
- Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Olga Novakova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
- Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jitka M. Zurmanova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
- *Correspondence: Jitka M. Zurmanova
| |
Collapse
|