1
|
Chen C, Peng C, Hu Z, Ge L. Effects of bone marrow mesenchymal stromal cells-derived therapies for experimental traumatic brain injury: A meta-analysis. Heliyon 2024; 10:e25050. [PMID: 38322864 PMCID: PMC10844131 DOI: 10.1016/j.heliyon.2024.e25050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/16/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
Background Bone-marrow-derived mesenchymal stromal (stem) cells [also called MSC(M)] and their extracellular vesicles (EVs) are considered a potentially innovative form of therapy for traumatic brain injury (TBI). Nevertheless, their application to TBI particularly remains preclinical, and the effects of these cells remain unclear and controversial. Therefore, an updated meta-analysis of preclinical studies is necessary to assess the effectiveness of MSC(M) and MSC(M) derived EVs in clinical trials. Methods The following databases were searched (to December 2022): PubMed, Web of Science, and Embase. In this study, we measured functional outcomes based on the modified neurological severity score (mNSS), cognitive outcomes based on the Morris water maze (MWM), and histopathological outcomes based on lesion volume. A random effects meta-analysis was conducted to evaluate the effect of mNSS, MWM, and lesion volume. Results A total of 2163 unique records were identified from our search, with Fifty-five full-text articles satisfying inclusion criteria. A mean score of 5.75 was assigned to the studies' quality scores, ranging from 4 to 7. MSC(M) and MSC(M) derived EVs had an overall positive effect on the mNSS score and MWM with SMDs -2.57 (95 % CI -3.26; -1.88; p < 0.01) and - 2.98 (95 % CI -4.21; -1.70; p < 0.01), respectively. As well, MSC(M) derived EVs were effective in reducing lesion volume by an SMD of - 0.80 (95 % CI -1.20; -0.40; p < 0.01). It was observed that there was significant variation among the studies, but further analyses could not determine the cause of this heterogeneity. Conclusions MSC(M) and MSC(M) derived EVs are promising treatments for TBI in pre-clinical studies, and translation to the clinical domain appears warranted. Besides, large-scale trials in animals and humans are required to support further research due to the limited sample size of MSC(M) derived EVs.
Collapse
Affiliation(s)
- Chunli Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Cuiying Peng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lite Ge
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan provincial key laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Changsha, 410003, China
| |
Collapse
|
2
|
Pischiutta F, Caruso E, Lugo A, Cavaleiro H, Stocchetti N, Citerio G, Salgado A, Gallus S, Zanier ER. Systematic review and meta-analysis of preclinical studies testing mesenchymal stromal cells for traumatic brain injury. NPJ Regen Med 2021; 6:71. [PMID: 34716332 PMCID: PMC8556393 DOI: 10.1038/s41536-021-00182-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are widely used in preclinical models of traumatic brain injury (TBI). Results are promising in terms of neurological improvement but are hampered by wide variability in treatment responses. We made a systematic review and meta-analysis: (1) to assess the quality of evidence for MSC treatment in TBI rodent models; (2) to determine the effect size of MSCs on sensorimotor function, cognitive function, and anatomical damage; (3) to identify MSC-related and protocol-related variables associated with greater efficacy; (4) to understand whether MSC manipulations boost therapeutic efficacy. The meta-analysis included 80 studies. After TBI, MSCs improved sensorimotor and cognitive deficits and reduced anatomical damage. Stratified meta-analysis on sensorimotor outcome showed similar efficacy for different MSC sources and for syngeneic or xenogenic transplants. Efficacy was greater when MSCs were delivered in the first-week post-injury, and when implanted directly into the lesion cavity. The greatest effect size was for cells embedded in matrices or for MSC-derivatives. MSC therapy is effective in preclinical TBI models, improving sensorimotor, cognitive, and anatomical outcomes, with large effect sizes. These findings support clinical studies in TBI.
Collapse
Affiliation(s)
- Francesca Pischiutta
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Enrico Caruso
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.,Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Lugo
- Laboratory of Lifestyle Epidemiology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Helena Cavaleiro
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Stemmatters, Biotechnology and Regenerative Medicine, Guimarães, Portugal
| | - Nino Stocchetti
- Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplants, University of Milan, Milan, Italy
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - António Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Silvano Gallus
- Laboratory of Lifestyle Epidemiology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elisa R Zanier
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| |
Collapse
|
3
|
Muhammad SA. Mesenchymal stromal cell secretome as a therapeutic strategy for traumatic brain injury. Biofactors 2019; 45:880-891. [PMID: 31498511 DOI: 10.1002/biof.1563] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) is a global health problem that is a common cause of disability and mortality. Despite the availability of many treatment options, none is capable of restoring functional and structural recovery of the damaged brain. Both the results of preclinical and clinical studies suggest the use of mesenchymal stromal cells (MSCs) as a therapeutic strategy for structural and functional recovery in TBI. However, recent evidence shows that the neuroprotective potential of MSCs is due to multiple secretions of bioactive molecules that modulate tissue microenvironment for tissue repair and regeneration. The results of preclinical studies indicate the therapeutic benefits of MSC secretome in TBI. Soluble bioactive molecules and extracellular vesicles are the various factors secreted by MSCs that can induce neurogenesis, angiogenesis, neovascularization, and anti-inflammatory activities. This review highlights the neuroprotective effect of MSC secretome for the treatment of TBI. In addition, the possible challenges of secretome as biotherapeutics are identified and how some of the issues raised could be overcome for effective clinical application are also discussed.
Collapse
|