1
|
Kuwabara M, Mitsuhara T, Teranishi M, Okazaki T, Takeda M, Ishii D, Kondo H, Shimizu K, Hosogai M, Hara T, Maeda Y, Kurose T, Kawahara Y, Yuge L, Horie N. Human cranial bone-derived mesenchymal stem cells cultured under simulated microgravity can improve cerebral infarction in rats. Exp Neurol 2024; 382:114947. [PMID: 39265921 DOI: 10.1016/j.expneurol.2024.114947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/15/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
The efficacy of transplanting human cranial bone-derived mesenchymal stem cells (hcMSCs) cultured under simulated microgravity (sMG) conditions has been previously reported; however, their effect on cerebral infarction remains unknown. Here, we examined the efficacy of transplanting hcMSCs cultured in an sMG environment into rat models of cerebral infarction. For evaluating neurological function, hcMSCs cultured in either a normal gravity (1G) or an sMG environment were transplanted in rats 1 day after inducing cerebral infarction. The expression of endogenous neurotrophic, axonal, neuronal, synaptogenic, angiogenic, and apoptosis-related factors in infarcted rat brain tissue was examined using real-time polymerase chain reaction and western blotting 35 days after stroke induction. The RNAs of hcMSCs cultured under 1G or sMG environments were sequenced. The results showed that neurological function was significantly improved after transplantation of hcMSCs from the sMG group compared with that from the 1G group. mRNA expressions of nerve growth factor, fibroblast growth factor 2, and synaptophysin were significantly higher in the sMG group than in the 1G group, whereas sortilin 1 expression was significantly lower. RNA sequencing analysis revealed that genes related to cell proliferation, angiogenesis, neurotrophy, neural and synaptic organization, and inhibition of cell differentiation were significantly upregulated in the sMG group. In contrast, genes promoting microtubule and extracellular matrix formation and cell adhesion, signaling, and differentiation were downregulated. These results demonstrate that hcMSCs cultured in the sMG environment may be a useful source of stem cells for the recovery of neurological function after cerebral infarction.
Collapse
Affiliation(s)
- Masashi Kuwabara
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Takafumi Mitsuhara
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masataka Teranishi
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takahito Okazaki
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masaaki Takeda
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Daizo Ishii
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Kondo
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kiyoharu Shimizu
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masahiro Hosogai
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takeshi Hara
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuyo Maeda
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Kurose
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | - Louis Yuge
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Space Bio-Laboratories Co., Ltd., Hiroshima, Japan
| | - Nobutaka Horie
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
2
|
Mikheeva I, Zhujkova N, Mikhailova G, Shtanchaev R, Pavlik L, Arkhipov V. Morphological changes in motoneurons of the oculomotor nucleus of mice after a 30-day space flight and through a 7-day period of readaptation to earth gravity. Brain Struct Funct 2023; 228:2041-2049. [PMID: 37688593 DOI: 10.1007/s00429-023-02704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023]
Abstract
The cellular mechanisms of neuroplastic changes in the structure of motoneurons and neuropils of the oculomotor (III) nuclei in mice after a 30-day space flight and 7 days after landing were studied. The results showed that microgravity caused degenerative phenomena in neurons: a decrease in the number of terminal dendritic branches was found both after flight and after readaptation to Earth's gravity. In mice after the flight, the number of axodendritic synapses was less than in the control, and their number was not restored after the readaptation. The number of mitochondria in the motoneurons of animals after the flight also decreased and after the readaptation reached only the control value. In addition, a significant number of dark motorneurons were found in mice after readaptation, which indicates that degeneration was caused not only by microgravity, but also by a reaction to the landing of the biosatellite. On the contrary, in the trochlear nucleus, as we showed earlier (Mikheeva et al. in Brain Res 15(1795):148077. https://doi.org/10.1016/j.brainres.2022.148077 , 2022), after readaptation, the dendrites and synaptic contacts were restored, and mitogenesis is significantly enhanced. It has been suggested that morphological changes in the oculomotor nucleus may be the main cause of microgravity-induced nystagmus.
Collapse
Affiliation(s)
- Irina Mikheeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Natalya Zhujkova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Gulnara Mikhailova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Rashid Shtanchaev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Lyubov Pavlik
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Vladimir Arkhipov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
3
|
Mikheeva I, Mikhailova G, Shtanchaev R, Arkhipov V, Pavlik L. Influence of a 30-day spaceflight on the structure of motoneurons of the trochlear nerve nucleus in mice. Brain Res 2021; 1758:147331. [PMID: 33539796 DOI: 10.1016/j.brainres.2021.147331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
During spaceflight and immediately after it, adaptive neuroplastic changes occur in the sensorimotor structures of the central nervous system, which are associated with changes of mainly vestibular and visual signals. It is known that the movement of the eyeball in the vertical direction is carried out by muscles that are innervated by the trochlear nerve (CN IV) and the oculomotor nerve (CN III). To elucidate the cellular processes underlying the atypical vertical nystagmus that occurs under microgravity conditions, it seems necessary to study the state of these nuclei in animals in more detail after prolonged space flights. We carried out a qualitative and quantitative light-optical and ultrastructural analysis of the nuclei of the trochlear nerve in mice after a 30-day flight on the Bion-M1 biosatellite. As a result, it was shown that the dendrites of motoneurons in the nucleus of the trochlear nerve significantly reorganized their geometry and orientation under microgravity conditions. The number of dendritic branches was increased, possibly in order to amplify the reduced signal flow. To ensure such plastic changes, the number and size of mitochondria in the soma of motoneurons and in axons coming from the vestibular structures increased. Thus, the main role in the adaptation of the trochlear nucleus to microgravity conditions, apparently, belongs to the dendrites of motoneurons, which rearrange their structure and function to enhance the flow of sensory information. These results complement our knowledge of the causes of atypical nystagmus in microgravity.
Collapse
Affiliation(s)
- Irina Mikheeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| | - Gulnara Mikhailova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Rashid Shtanchaev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Vladimir Arkhipov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia; State Natural Science Institute, Pushchino, Moscow Region 142290, Russia
| | - Lyubov Pavlik
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia; State Natural Science Institute, Pushchino, Moscow Region 142290, Russia
| |
Collapse
|