1
|
Yakupova E, Semenovich D, Abramicheva P, Zorova L, Pevzner I, Andrianova N, Popkov V, Manskikh V, Bocharnikov A, Voronina Y, Zorov D, Plotnikov E. Effects of caloric restriction and ketogenic diet on renal fibrosis after ischemia/reperfusion injury. Heliyon 2023; 9:e21003. [PMID: 37928038 PMCID: PMC10623167 DOI: 10.1016/j.heliyon.2023.e21003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/25/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
The beneficial effects of caloric restriction (CR) and a ketogenic diet (KD) have been previously shown when performed prior to kidney injury. We investigated the effects of CR and KD on fibrosis development after unilateral kidney ischemia/reperfusion (UIR). Post-treatment with CR significantly (p < 0.05) affected blood glucose (2-fold decrease), ketone bodies (3-fold increase), lactate (1.5-fold decrease), and lipids (1.4-fold decrease). In the kidney, CR improved succinate dehydrogenase and malate dehydrogenase activity by 2-fold each, but worsened fibrosis progression. Similar results were shown for the KD, which restored the post-UIR impaired activities of succinate dehydrogenase, malate dehydrogenase, and α-ketoglutarate dehydrogenase (which was decreased 2-fold) but had no effect on fibrosis progression. Thus, our study shows that the use of CR or KD after UIR did not reduce the development of fibrosis, as shown by hydroxyproline content, western-blotting, and RT-PCR, whereas it caused significant metabolic changes in kidney tissue after UIR.
Collapse
Affiliation(s)
- E.I. Yakupova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - D.S. Semenovich
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - P.A. Abramicheva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - L.D. Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow 117997, Russia
| | - I.B. Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow 117997, Russia
| | - N.V. Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - V.A. Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow 117997, Russia
| | - V.N. Manskikh
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - A.D. Bocharnikov
- Sechenov First Moscow State Medical University, Moscow 119992, Russia
| | - Y.A. Voronina
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Moscow 119234, Russia
- Laboratory of Cardiac Electrophysiology, National Medical Research Center for Cardiology, Moscow 121552, Russia
| | - D.B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow 117997, Russia
| | - E.Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow 117997, Russia
| |
Collapse
|
2
|
Matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in kidney disease. Adv Clin Chem 2021; 105:141-212. [PMID: 34809827 DOI: 10.1016/bs.acc.2021.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Matrix metalloproteinases (MMPs) are a group of zinc and calcium endopeptidases which cleave extracellular matrix (ECM) proteins. They are also involved in the degradation of cell surface components and regulate multiple cellular processes, cell to cell interactions, cell proliferation, and cell signaling pathways. MMPs function in close interaction with the endogenous tissue inhibitors of matrix metalloproteinases (TIMPs), both of which regulate cell turnover, modulate various growth factors, and participate in the progression of tissue fibrosis and apoptosis. The multiple roles of MMPs and TIMPs are continuously elucidated in kidney development and repair, as well as in a number of kidney diseases. This chapter focuses on the current findings of the significance of MMPs and TIMPs in a wide range of kidney diseases, whether they result from kidney tissue changes, hemodynamic alterations, tubular epithelial cell apoptosis, inflammation, or fibrosis. In addition, the potential use of these endopeptidases as biomarkers of renal dysfunction and as targets for therapeutic interventions to attenuate kidney disease are also explored in this review.
Collapse
|
3
|
Rahimi MM, Bagheri A, Bagheri Y, Fathi E, Bagheri S, Nia AV, Jafari S, Montazersaheb S. Renoprotective effects of prazosin on ischemia-reperfusion injury in rats. Hum Exp Toxicol 2021; 40:1263-1273. [PMID: 33559503 DOI: 10.1177/0960327121993224] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Renal ischemia-reperfusion (IR) injury is one of the main leading causes of acute kidney injury associated with inflammation, oxidative stress and cell apoptosis. We studied the effects of prazosin, as a specific blocker of α1-AR, on renal IR injury. METHODS Rats were divided into normal control; untreated IR and prazosin-treated IR (1 mg/kg body weight). Prazosin was administered by intraperitoneal injection 30 min prior to IR induction. The level of urea/creatinine and oxidative factors were detected by colorimetric methods. Apoptosis-associated factors, inflammatory, and signaling proteins were analyzed in renal tissue. The abnormalities of renal histopathology were detected by immunohistochemistry. RESULTS Administration of prazosin to IR rats ameliorated serum urea and creatinine and IR-induced histopathological damages. Lipid peroxidation was significantly improved after treatment by prazosin in IR injury rats, however, antioxidant status was not affected. Rats subjected to IR injury activated Bax protein and NF-κB mediated inflammatory response. Moreover, treatment with prazosin inhibited renal NF-κB activation, resulting in a significant decline in pro-inflammatory cytokine of IL-6. CONCLUSION These findings suggest that prazosin could be a good candidate to attenuate renal IR injury due to its ability to modulate renal function, apoptosis and inflammation.
Collapse
Affiliation(s)
- M M Rahimi
- Kidney Research Center, 48432Tabriz University of Medical Sciences, Tabriz, Iran
| | - A Bagheri
- Department of Urology, Sina Hospital, 48432Tabriz University of Medical Sciences, Tabriz, Iran
| | - Y Bagheri
- Young Researchers and Elite Club, 201583Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - E Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, 56947University of Tabriz, Tabriz, Iran
| | - S Bagheri
- 475027Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - A V Nia
- 475027Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - S Jafari
- Kidney Research Center, 48432Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, 48432Tabriz University of Medical Sciences, Tabriz, Iran
| | - S Montazersaheb
- Molecular Medicine Research Center, 48432Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Bagheri Y, Barati A, Nouraei S, Jalili Namini N, Bakhshi M, Fathi E, Montazersaheb S. Comparative study of gavage and intraperitoneal administration of gamma-oryzanol in alleviation/attenuation in a rat animal model of renal ischemia/reperfusion-induced injury. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:175-183. [PMID: 33953856 PMCID: PMC8061328 DOI: 10.22038/ijbms.2020.51276.11642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/05/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Ischemia/reperfusion (I/R) is the leading cause of acute kidney injury. This study aimed to elucidate the reno-protective effect of gamma-oryzanol (GO) by comparing gavage and intraperitoneal (IP) administration methods on renal I/R injury in a rat model. MATERIALS AND METHODS Rats were divided into four groups including (group 1) sham, (group 2) I/R-control, (group 3) I/R+GO gavage-treated, and (group 4) I/R+ GO IP-treated. A single dose of GO was administrated to groups 3 and 4 (100 mg/kg body weight), 60 min before induction of I/R. After anesthesia, I/R was created by 45 min of ischemia, followed by 6 hr of reperfusion. Then, blood and tissue samples were subjected to evaluation of renal function, anti-oxidant capacity, inflammation, apoptotic proteins, and IKB/NF-kB pathway. RESULTS The two GO administration methods showed improvement of renal function along with attenuation of histological abnormalities. An increase in antioxidant capacity along with a decrease in pro-inflammatory markers, decline in the expression levels of BAX, Bax/Bcl-2, and caspase-3, and up-regulation of Bcl-2 expression were recorded. Moreover, a significant decrease in NF-Kb, p-IKBα, and MMP-2/9 with an increase in IKBα levels were also observed. Overall, in a comparative evaluation between the two gavage and IP administration methods, we did not find any differences in all examined parameters, except IL-6 which had a better result via gavage. CONCLUSION A single dose of GO administration has a reno-protective effect against renal I/R injury. Gavage and IP administration exhibit similar efficiency in alleviation of I/R injury.
Collapse
Affiliation(s)
- Yasin Bagheri
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Alireza Barati
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Sana Nouraei
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Nasim Jalili Namini
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mohammad Bakhshi
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Dashek RJ, Diaz C, Chandrasekar B, Rector RS. The Role of RECK in Hepatobiliary Neoplasia Reveals Its Therapeutic Potential in NASH. Front Endocrinol (Lausanne) 2021; 12:770740. [PMID: 34745017 PMCID: PMC8564138 DOI: 10.3389/fendo.2021.770740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multimorbidity disorder ranging from excess accumulation of fat in the liver (steatosis) to steatohepatitis (NASH) and end-stage cirrhosis, and the development of hepatocellular carcinoma (HCC) in a subset of patients. The defining features of NASH are inflammation and progressive fibrosis. Currently, no pharmaceutical therapies are available for NAFLD, NASH and HCC; therefore, developing novel treatment strategies is desperately needed. Reversion Inducing Cysteine Rich Protein with Kazal motifs (RECK) is a well-known modifier of the extracellular matrix in hepatic remodeling and transition to HCC. More recently, its role in regulating inflammatory and fibrogenic processes has emerged. Here, we summarize the most relevant findings that extend our current understanding of RECK as a regulator of inflammation and fibrosis, and its induction as a potential strategy to blunt the development and progression of NASH and HCC.
Collapse
Affiliation(s)
- Ryan J. Dashek
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
- Comparative Medicine Program, Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Connor Diaz
- School of Medicine, University of Missouri, Columbia, MO, United States
| | - Bysani Chandrasekar
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
- Division of Cardiology, Department of Medicine, University of Missouri, Columbia, MO, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| | - R. Scott Rector
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO, United States
- *Correspondence: R. Scott Rector,
| |
Collapse
|