Bikmulina P, Kosheleva N, Shpichka A, Yusupov V, Gogvadze V, Rochev Y, Timashev P. Photobiomodulation in 3D tissue engineering.
JOURNAL OF BIOMEDICAL OPTICS 2022;
27:JBO-220027VRR. [PMID:
36104833 PMCID:
PMC9473299 DOI:
10.1117/1.jbo.27.9.090901]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE
The method of photobiomodulation (PBM) has been used in medicine for a long time to promote anti-inflammation and pain-resolving processes in different organs and tissues. PBM triggers numerous cellular pathways including stimulation of the mitochondrial respiratory chain, alteration of the cytoskeleton, cell death prevention, increasing proliferative activity, and directing cell differentiation. The most effective wavelengths for PBM are found within the optical window (750 to 1100 nm), in which light can permeate tissues and other water-containing structures to depths of up to a few cm. PBM already finds its applications in the developing fields of tissue engineering and regenerative medicine. However, the diversity of three-dimensional (3D) systems, irradiation sources, and protocols intricate the PBM applications.
AIM
We aim to discuss the PBM and 3D tissue engineered constructs to define the fields of interest for PBM applications in tissue engineering.
APPROACH
First, we provide a brief overview of PBM and the timeline of its development. Then, we discuss the optical properties of 3D cultivation systems and important points of light dosimetry. Finally, we analyze the cellular pathways induced by PBM and outcomes observed in various 3D tissue-engineered constructs: hydrogels, scaffolds, spheroids, cell sheets, bioprinted structures, and organoids.
RESULTS
Our summarized results demonstrate the great potential of PBM in the stimulation of the cell survival and viability in 3D conditions. The strategies to achieve different cell physiology states with particular PBM parameters are outlined.
CONCLUSIONS
PBM has already proved itself as a convenient and effective tool to prevent drastic cellular events in the stress conditions. Because of the poor viability of cells in scaffolds and the convenience of PBM devices, 3D tissue engineering is a perspective field for PBM applications.
Collapse