1
|
Lim CW, Hamanaka G, Liang AC, Chan SJ, Ling KH, Lo EH, Arai K, Cheah PS. In vitro cytotoxicity assessment of ruxolitinib on oligodendrocyte precursor cell and neural stem/progenitor cell populations. Neurotoxicology 2024; 105:10-20. [PMID: 39209271 DOI: 10.1016/j.neuro.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
JAK-STAT signaling cascade has emerged as an ideal target for the treatment of myeloproliferative diseases, autoimmune diseases, and neurological disorders. Ruxolitinib (Rux), is an orally bioavailable, potent and selective Janus-associated kinase (JAK) inhibitor, proven to be effective to target activated JAK-STAT pathway in the diseases previously described. Unfortunately, limited studies have investigated the potential cytotoxic profile of Rux on other cell populations within the heterogenous CNS microenvironment. Two stem and progenitor cell populations, namely the oligodendrocyte precursor cells (OPCs) and neural stem/progenitor cells (NSPCs), are important for long-term maintenance and post-injury recovery response of the CNS. In light of the limited evidence, this study sought to investigate further the effect of Rux on proliferating and differentiating OPCs and NSPCs populations. In the present study, cultured rat OPCs and NSPCs were treated with various concentrations of Rux, ranging from 2 μM to 20 μM. The effect of Rux on proliferating OPCs (PDGF-R-α+) and proliferating NSPCs (nestin+) was assessed via a 3-day Rux treatment, whereas its effect on differentiating OPCs (MBP+/PDGF-R-α+) and differentiating NSPCs (neurofilament+) was assessed after a 7-day treatment. Cytotoxicity of Rux was also assessed on OPC populations by examining its influence on cell death and DNA synthesis via YO-PRO-1/PI dual-staining and BrdU assay, respectively. The results suggest that Rux at a dosage above 10 μM reduces the number proliferating OPCs, likely via the induction of apoptosis. On the other hand, Rux treatment from 2.5 μM to 20 μM significantly reduces the number of differentiating OPCs by inducing necrosis. Meanwhile, Rux treatment has no observable untoward impact on NSPC cultures within the dosage range tested. Taken together, OPCs appears to be more vulnerable to the dosage effect of Rux, whereas NSPCs are not significantly impacted by Rux, suggesting a differential mechanism of actions of Rux on the cell types.
Collapse
Affiliation(s)
- Cheng-Wei Lim
- Department of Human Anatomy, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Gen Hamanaka
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Anna C Liang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Su Jing Chan
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; Malaysian Research Institute on Ageing (MyAgeing™), Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| | - Pike See Cheah
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; Department of Human Anatomy, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; Malaysian Research Institute on Ageing (MyAgeing™), Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| |
Collapse
|
2
|
Wang H, Mou H, Xu X, Liu C, Zhou G, Gao B. LncRNA KCNQ1OT1 (potassium voltage-gated channel subfamily Q member 1 opposite strand/antisense transcript 1) aggravates acute kidney injury by activating p38/NF-κB pathway via miR-212-3p/MAPK1 (mitogen-activated protein kinase 1) axis in sepsis. Bioengineered 2021; 12:11353-11368. [PMID: 34783627 PMCID: PMC8810185 DOI: 10.1080/21655979.2021.2005987] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022] Open
Abstract
Acute kidney injury (AKI), a common complication of sepsis, is characterized by a rapid loss of renal excretory function. A variety of etiologies and pathophysiological processes may contribute to AKI. Previously, mitogen-activated protein kinase 1 (MAPK1) was reported to regulate cellular processes in various sepsis-associated diseases. The current study aimed to further explore the biological function and regulatory mechanism of MAPK1 in sepsis-induced AKI. In our study, MAPK1 exhibited high expression in the serum of AKI patients. Functionally, knockdown of MAPK1 suppressed inflammatory response, cell apoptosis in response of lipopolysaccharide (LPS) induction in HK-2 cells. Moreover, MAPK1 deficiency alleviated renal inflammation, renal dysfunction, and renal injury in vivo. Mechanistically, MAPK1 could activate the downstream p38/NF-κB pathway. Moreover, long noncoding RNA potassium voltage-gated channel subfamily Q member 1 opposite strand/antisense transcript 1 (KCNQ1OT1) was identified to serve as a competing endogenous RNA for miR-212-3p to regulate MAPK1. Finally, rescue assays indicated that the inhibitory effect of KCNQ1OT1 knockdown on inflammatory response, cell apoptosis, and p38/NF-κB pathway was reversed by MAPK1 overexpression in HK-2 cells. In conclusion, KCNQ1OT1 aggravates acute kidney injury by activating p38/NF-κB pathway via miR-212-3p/MAPK1 axis in sepsis. Therefore, KCNQ1OT may serve as a potential biomarker for the prognosis and diagnosis of AKI patients.
Collapse
Affiliation(s)
- Haixia Wang
- Department of Critical Care Medicine, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Hongbin Mou
- Department of Nephrology, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Xiaolan Xu
- Department of Critical Care Medicine, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Changhua Liu
- Department of Nephrology, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Gang Zhou
- Department of Nephrology, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Bo Gao
- Department of Nephrology, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| |
Collapse
|
3
|
Role of MAPK ERK1/2 and p38 in the Regulation of Secretory Functions of Different Populations of Neuroglia in Ethanol-Induced Neurodegeneration. Bull Exp Biol Med 2021; 171:699-703. [PMID: 34709510 DOI: 10.1007/s10517-021-05298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 10/20/2022]
Abstract
We studied the participation of ERK1/2 and p38 in secretion of neurotrophic growth factors by various types of neuroglia under conditions of in vitro and in vivo modeled ethanol-induced neurodegeneration. The inhibitory role of these protein kinases in the production of neurotrophins by intact astrocytes and the absence of their participation in the regulation of functions of oligodendrocytes and microglial cells were shown. Under conditions of ethanol neurotoxicity, the role of ERK1/2 and p38 in the production of growth factors by glial elements was significantly changed. Neurodegeneration modeled in vitro led to inversion of the role of both protein kinases in the secretion of neurotrophins by astroglia and inhibition of the cytokine-synthesizing function of oligodendrocytes and microglial cells by ERK1/2 and p38. In mice receiving ethanol per os for a long time (as well as in cells in vitro exposed to ethanol), mitogen-activated kinases stimulated the function of astrocytes and inhibited the production of growth factors by microglial cells. At the same time, chronic alcoholization was accompanied by the appearance of the stimulating role of ERK1/2 and p38 in the implementation of the secretory function by oligodendrocytes.
Collapse
|
4
|
Specific Features of Intracellular Signal Transduction in the Regulation of Functions of Neural Stem Cells and Committed Neuronal Progenitors. Bull Exp Biol Med 2021; 170:522-527. [PMID: 33725249 DOI: 10.1007/s10517-021-05100-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 12/21/2022]
Abstract
We studied the role of NF-κB-, cAMP/PKA-, JAKs/STAT3-, ERK1/2-, p38-, JNK- and p53- mediated signaling pathways in the realization of the growth potential of neural stem cells and committed neuronal progenitors under in vitro conditions. The method of pharmacological blockade with selective inhibitors of individual signaling molecules revealed some principal differences in their role in the determination of the proliferation and differentiation status of progenitor cells of different classes. Analysis of the peculiarities of intracellular signaling in cells and comparison of the role of its individual elements attest to the prospects of developing new drugs with neuroregenerative activity based on STAT3 inhibitors or JNK activators. These modulations of activity of signaling molecules can stimulate the realization of the growth potential of committed neuronal progenitors and neutral stem cells, respectively. The blockade of STAT3 and an increase in the content of phosphorylated forms of JNK had no "negative" effects on the functioning of multipotent neural stem cells and committed neuronal progenitors, respectively.
Collapse
|
5
|
Zyuz'kov GN, Miroshnichenko LAE, Simanina EV, Stavrova LA, Polykova TYE. Intracellular signaling molecules of nerve tissue progenitors as pharmacological targets for treatment of ethanol-induced neurodegeneration. J Basic Clin Physiol Pharmacol 2021; 33:305-315. [PMID: 33559456 DOI: 10.1515/jbcpp-2020-0317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/25/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVES The development of approaches to the treatment of neurodegenerative diseases caused by alcohol abuse by targeted pharmacological regulation of intracellular signaling transduction of progenitor cells of nerve tissue is promising. We studied peculiarities of participation of NF-кB-, сАМР/РКА-, JAKs/STAT3-, ERK1/2-, p38-pathways in the regulation of neural stem cells (NSC) and neuronal-committed progenitors (NCP) in the simulation of ethanol-induced neurodegeneration in vitro and in vivo. METHODS In vitro, the role of signaling molecules (NF-кB, сАМР, РКА, JAKs, STAT3, ERK1/2, p38) in realizing the growth potential of neural stem cells (NSC) and neuronal-committed progenitors (NCP) in ethanol-induced neurodegeneration modeled in vitro and in vivo was studied. To do this, the method of the pharmacological blockade with the use of selective inhibitors of individual signaling molecules was used. RESULTS Several of fundamental differences in the role of certain intracellular signaling molecules (SM) in proliferation and specialization of NSC and NCP have been revealed. It has been shown that the effect of ethanol on progenitors is accompanied by the formation of a qualitatively new pattern of signaling pathways. Data have been obtained on the possibility of stimulation of nerve tissue regeneration in ethanol-induced neurodegeneration by NF-кB and STAT3 inhibitors. It has been found that the blockage of these SM stimulates NSC and NCP in conditions of ethanol intoxication and does not have a «negative» effect on the realization of the growth potential of intact progenitors (which will appear de novo during therapy). CONCLUSIONS The results may serve as a basis for the development of fundamentally new drugs to the treatment of alcoholic encephalopathy and other diseases of the central nervous system associated with alcohol abuse.
Collapse
Affiliation(s)
- Gleb Nikolaevich Zyuz'kov
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Larisa Arkad Evna Miroshnichenko
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Elena Vladislavovna Simanina
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Larisa Alexandrovna Stavrova
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Tatyana Yur Evna Polykova
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| |
Collapse
|
6
|
Zhang Z, Zheng Q, Liu Y, Sun L, Han P, Wang R, Zhao J, Hu S, Zhao X. Human CD133-positive hematopoietic progenitor cells enhance the malignancy of breast cancer cells. BMC Cancer 2020; 20:1158. [PMID: 33243165 PMCID: PMC7690192 DOI: 10.1186/s12885-020-07633-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/12/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Human CD133+ hematopoietic progenitor cells (HPCs) are a specific subset of cells that can regulate tumor malignancy. However, the mechanism by which CD133+ HPCs affect the malignancy of human breast cancer has not been reported. METHODS CD133+ HPCs were isolated and purified from human umbilical cord blood (UCB). We used in vitro culture of MCF-7 and MDA-MB-231 cell lines, and MCF-7 and MDA-MB-231 cells in nude mice to evaluate whether CD133+ HPCs affected the apoptosis, proliferation, invasion and epithelial mesenchymal transition EMT of breast cancer cells. RESULTS Co-culture with CD133+ HPCs, but not UCB CD133- cells, promoted the proliferation of human breast cancer MCF-7 and MDA-MB-231 cells, accompanied by reducing in vitro spontaneous apoptosis. Co-administration of these two lines with CD133+ HPCs significantly enhanced the growth of implanted breast cancer in vivo. Furthermore, co-culture with CD133+ HPCs, enhanced the invasion of breast cancer cells, N-cadherin and Vimentin expression, but reduced E-cadherin expression in breast cancer cells. CONCLUSIONS Our study demonstrated that CD133+ HPCs enhance the malignancy of breast cancer cells by attenuating spontaneous apoptosis and promoting the process of epithelial mesenchymal transition. These findings may provide new insights into the role of human CD133+ HPCs in breast cancer pathogenesis. Therefore, CD133+ HPCs may be a new therapeutic target for inhibiting the progression of breast cancer.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Qinglian Zheng
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yonghui Liu
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Lianqing Sun
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Pingping Han
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Rui Wang
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Jiao Zhao
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Shan Hu
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xinhan Zhao
- Department of Medical Oncology, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
7
|
Zyuz'kov GN, Miroshnichenko LA, Polyakova TY, Stavrova LA, Simanina EV, Zhdanov VV, Chaikovskii AV. Peculiarities of the Involvement of MAPKS ERK1/2 and р38 in the Implementation of the Functions of Neural Stem Cells and Neuronal Committed Precursors in Ethanol-Induced Neurodegeneration. Bull Exp Biol Med 2020; 169:609-613. [PMID: 32979127 DOI: 10.1007/s10517-020-04938-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Indexed: 11/26/2022]
Abstract
We studied the peculiarities of the participation of ERK1/2 and р38 in regulation of various types of progenitor cells of the nervous tissue under conditions of ethanol-induced neurodegeneration modeled in vitro and in vivo. The stimulating role of these signaling molecules in the realization of the growth potential of intact multipotent neural stem cells and committed neuronal precursors (clonogenic PSA-NCAM+ cells) was demonstrated. In vitro exposure to neurotoxic doses of ethanol led to the loss of the specified role of ERK1/2 and p38 in the cell cycle regulation. Inversion of the role of both studied MAP-kinases in determining the proliferation status of neural stem cells after long-term administration of ethanol to experimental animals was revealed. In committed neuronal precursors, this inversion (inhibition of mitotic activity instead of activation) was revealed only for ERK1/2. In mice exposed to chronic alcoholization, ERK1/2 no longer participated in the process of specialization of both types of regeneration-competent cells of the nerve tissue. The revealed fundamental difference between the functions of ERK1/2 and p38 in the cell cycle regulation in neural stem cells and committed neuronal precursors under optimal conditions and during ethanol-induced neurodegeneration does not allow drawing definite conclusions about the prospect of using modifiers of their activity for the therapy for alcohol-related CNS pathologies.
Collapse
Affiliation(s)
- G N Zyuz'kov
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
| | - L A Miroshnichenko
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - T Y Polyakova
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - L A Stavrova
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - E V Simanina
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - V V Zhdanov
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - A V Chaikovskii
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
8
|
Zyuz'kov GN, Zhdanov VV, Miroshnichenko LA, Simanina EV, Polyakova TY, Stavrova LA, Agafonov VI, Minakova MY, Danilets MG, Ligacheva AA. Hemostimulating Effects of c-Jun N-Terminal Kinase (JNK) Inhibitor during Cytostatic Myelosuppression and Mechanisms of Their Development. Bull Exp Biol Med 2020; 169:332-337. [PMID: 32737724 DOI: 10.1007/s10517-020-04880-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Indexed: 12/26/2022]
Abstract
The hemostimulating effects of c-Jun N-terminal kinase (JNK) inhibitor were examined on the mouse model of myelosuppression provoked by 5-fluorouracil. Blockade of JNK during postcytostatic period accelerated recovery of granulomonocytopoiesis and erythropoiesis. It also increased the content of neutrophilic granulocytes and erythroid cells in the hematopoietic tissue and elevated the counts of neutrophils and reticulocytes in the peripheral blood. The development of these phenomena resulted from elevated content and up-regulated functional activity of bone marrow hematopoietic progenitors associated with the direct action of JNK inhibitor on these progenitors and enhanced secretion of hemopoietins by stromal elements of the hematopoiesis-inducing microenvironment.
Collapse
Affiliation(s)
- G N Zyuz'kov
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
| | - V V Zhdanov
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - L A Miroshnichenko
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - E V Simanina
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - T Yu Polyakova
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - L A Stavrova
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - V I Agafonov
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - M Yu Minakova
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - M G Danilets
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - A A Ligacheva
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
9
|
Zyuz'kov GN, Miroshnichenko LA, Polyakova TY, Stavrova LA, Simanina EV, Zhdanov VV. Specific Roles of JAKs and STAT3 in Functions of Neural Stem Cells and Committed Neuronal Progenitors during Ethanol-Induced Neurodegeneration. Bull Exp Biol Med 2020; 168:356-360. [PMID: 31938906 DOI: 10.1007/s10517-020-04708-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Indexed: 01/26/2023]
Abstract
Peculiar roles of JAKs and STAT3 in realization of growth potential of various types of progenitor cells in neural tissue were examined during ethanol-induced neurodegeneration modeled both in vitro and in vivo. During in vitro action of C2H5OH, these signal molecules exerted the opposite effects on mitotic activity of multipotent neural stem cells and committed neural progenitors (the clonogenic PSA-NCAM+ cells). The JAKs and STAT3 inhibitors down-regulated the rate of neural stem cell division (proliferative activity) but up-regulated such activity of the committed neural progenitors. A long-term in vivo exposure of mice to ethanol inversed the roles of JAKs and STAT3 in determination of proliferative status of neural stem cells and eliminated involvement of JAKs in functional control over the committed progenitors of neurons. The data attest to much promise of STAT3 inhibitors in treatment of ethanol-induced CNS diseases as the remedies that stimulate realization of growth potential in multipotent neural stem cells and committed neural progenitors.
Collapse
Affiliation(s)
- G N Zyuz'kov
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Tomsk, Russia.
| | - L A Miroshnichenko
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Tomsk, Russia
| | - T Yu Polyakova
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Tomsk, Russia
| | - L A Stavrova
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Tomsk, Russia
| | - E V Simanina
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Tomsk, Russia
| | - V V Zhdanov
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Tomsk, Russia
| |
Collapse
|
10
|
Participation of cAMP/PKA-Mediated Signaling Pathways in Functional Activity of Regeneration-Competent Cells in the Nervous Tissue under Conditions of Ethanol-Induced Neurodegeneration. Bull Exp Biol Med 2019; 167:723-727. [PMID: 31655996 DOI: 10.1007/s10517-019-04608-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Indexed: 02/05/2023]
Abstract
We studied the involvement of cAMP/PKA signaling in the realization of the growth potential of neural progenitors and secretion of neurotrophic growth factors by glial elements under conditions of ethanol-induced neurodegeneration in vitro and in vivo. The stimulating role of cAMP and PKA in cell cycle progression of the neural progenitor cells and in production of neurotrophins by the cells in nervous tissue under the optimal conditions to vital activity was demonstrated. Ethanol inverted the role of cAMP/PKA signaling pathways in determination of the proliferation-differentiation status of neural stem cells. Selective blockade of adenylate cyclase or PKA in neural stem cells increased the rate of their division against the background of relative decrease in differentiation rate. In addition, cAMP/PKA signaling does not longer participate in neurotrophin production by glial cells in neurodegeneration. These findings suggest that inhibitors of activity/expression of adenylate cyclase and PKA can be considered as possible drugs with regenerative activity for the treatment of nervous system pathologies provoked by alcohol.
Collapse
|