1
|
Svistushkin MV, Kotova S, Shpichka A, Starostina S, Shekhter A, Bikmulina P, Nikiforova A, Zolotova A, Royuk V, Kochetkov PA, Timashev S, Fomin V, Vosough M, Svistushkin V, Timashev P. Stem cell therapy for vocal fold regeneration after scarring: a review of experimental approaches. Stem Cell Res Ther 2022; 13:176. [PMID: 35505357 PMCID: PMC9066721 DOI: 10.1186/s13287-022-02853-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/13/2022] [Indexed: 11/12/2022] Open
Abstract
This review aims at becoming a guide which will help to plan the experimental design and to choose adequate methods to assess the outcomes when testing cell-based products in the treatment of the damaged vocal folds. The requirements to preclinical trials of cell-based products remain rather hazy and dictated by the country regulations. Most parameters like the way the cells are administered, selection of the cell source, selection of a carrier, and design of in vivo studies are decided upon by each research team and may differ essentially between studies. The review covers the methodological aspects of preclinical studies such as experimental models, characterization of cell products, assessment of the study outcome using molecular, morphological and immunohistochemical analyses, as well as measuring the tissue physical properties. The unified recommendations to perform preclinical trials could significantly facilitate the translation of cell-based products into the clinical practice.
Collapse
Affiliation(s)
- Mikhail V Svistushkin
- Department for ENT Diseases, Sechenov University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia
| | - Svetlana Kotova
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,Department of Polymers and Composites, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Anastasia Shpichka
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia. .,Institute for Regenerative Medicine, Sechenov University, Moscow, Russia. .,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.
| | | | - Anatoliy Shekhter
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Polina Bikmulina
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia.,Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Anna Nikiforova
- Department for ENT Diseases, Sechenov University, Moscow, Russia
| | - Anna Zolotova
- Department for ENT Diseases, Sechenov University, Moscow, Russia
| | - Valery Royuk
- University Hospital No 1, Sechenov University, Moscow, Russia
| | - P A Kochetkov
- Department for ENT Diseases, Sechenov University, Moscow, Russia
| | - Serge Timashev
- National Research Nuclear University «MEPhI», Moscow, Russia
| | - Victor Fomin
- Department of Internal Medicine No 1, Sechenov University, Moscow, Russia
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | | | - Peter Timashev
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia. .,Institute for Regenerative Medicine, Sechenov University, Moscow, Russia. .,Department of Polymers and Composites, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia. .,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
2
|
Efremov YM, Zurina IM, Presniakova VS, Kosheleva NV, Butnaru DV, Svistunov AA, Rochev YA, Timashev PS. Mechanical properties of cell sheets and spheroids: the link between single cells and complex tissues. Biophys Rev 2021; 13:541-561. [PMID: 34471438 PMCID: PMC8355304 DOI: 10.1007/s12551-021-00821-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022] Open
Abstract
Cell aggregates, including sheets and spheroids, represent a simple yet powerful model system to study both biochemical and biophysical intercellular interactions. However, it is becoming evident that, although the mechanical properties and behavior of multicellular structures share some similarities with individual cells, yet distinct differences are observed in some principal aspects. The description of mechanical phenomena at the level of multicellular model systems is a necessary step for understanding tissue mechanics and its fundamental principles in health and disease. Both cell sheets and spheroids are used in tissue engineering, and the modulation of mechanical properties of cell constructs is a promising tool for regenerative medicine. Here, we review the data on mechanical characterization of cell sheets and spheroids, focusing both on advances in the measurement techniques and current understanding of the subject. The reviewed material suggest that interplay between the ECM, intercellular junctions, and cellular contractility determines the behavior and mechanical properties of the cell aggregates.
Collapse
Affiliation(s)
- Yuri M. Efremov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, Moscow, 119991 Russia
| | - Irina M. Zurina
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St, Moscow, Russia
- FSBSI Institute of General Pathology and Pathophysiology, 125315, 8 Baltiyskaya St, Moscow, Russia
| | - Viktoria S. Presniakova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St, Moscow, Russia
| | - Nastasia V. Kosheleva
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, Moscow, 119991 Russia
- FSBSI Institute of General Pathology and Pathophysiology, 125315, 8 Baltiyskaya St, Moscow, Russia
| | - Denis V. Butnaru
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | - Andrey A. Svistunov
- Sechenov First Moscow State Medical University (Sechenov University), 119991, 8-2 Trubetskaya St, Moscow, Russia
| | - Yury A. Rochev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St, Moscow, Russia
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, H91 W2TY, Ireland
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, Moscow, 119991 Russia
- Department of Polymers and Composites, N.N. Semenov Institute of Chemical Physics, 119991 4 Kosygin St, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1–3, Moscow, 119991 Russia
| |
Collapse
|