1
|
Lee H, Kim MJ, Lee IK, Hong CW, Jeon JH. Impact of hyperglycemia on immune cell function: a comprehensive review. Diabetol Int 2024; 15:745-760. [PMID: 39469566 PMCID: PMC11512986 DOI: 10.1007/s13340-024-00741-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/10/2024] [Indexed: 10/30/2024]
Abstract
Hyperglycemia, a hallmark of diabetes and various metabolic disorders, has profound implications for immune cell function. The relationship between elevated blood glucose levels and immune cell function is a topic of significant medical interest. In this review, we aim to comprehensively review effects of hyperglycemia on various immune cell types and its clinical implications, particularly T cells, macrophages, natural killer cells, and neutrophils. It aims to consolidate current knowledge on the subject, with a focus on both type 1 and type 2 diabetes, as well as other pathological states where hyperglycemia is a concern. A comprehensive examination of recent studies and clinical data was conducted to assess effects of hyperglycemia on immune cell function. Evidence indicates that hyperglycemia can significantly alter immune cell function, with different diabetic conditions showing varied responses. Roles of key metabolic hormones in regulating T cell function highlight potential therapeutic targets for restoring immune balance. In addition, reprogramming of innate immune cells such as macrophages and natural killer cells under hyperglycemic conditions suggests a complex metabolic-immunological interface. This review will contribute to a better understanding of the link between diabetes, other metabolic disorders, and immune function. By examining recent research and clinical findings, this review will enhance our comprehension of the mechanisms at play and guide future medical strategies for managing and treating conditions associated with hyperglycemia.
Collapse
Affiliation(s)
- Hoyul Lee
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Min-Ji Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, 807 Hoguk-Ro, Buk-Gu, Daegu, 41404 Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Chang-Won Hong
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Han Jeon
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, 807 Hoguk-Ro, Buk-Gu, Daegu, 41404 Republic of Korea
| |
Collapse
|
2
|
Basyreva LY, Shmeleva EV, Ivanov VA, Vakhrusheva TV, Panasenko OM, Ostrovsky EM, Gusev SA, Sergienko VI. The Effect of Vitamin D3 on Neutrophil Extracellular Trap Formation in High-Glucose Conditions. Bull Exp Biol Med 2023; 176:137-142. [PMID: 38189871 DOI: 10.1007/s10517-024-05983-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 01/09/2024]
Abstract
NETosis, i.e., the formation of neutrophil extracellular traps (NET), and neutrophil autophagy are important elements in the pathogenesis and the development of complications of type 2 diabetes mellitus (T2DM). Therefore, the search of drugs that can regulate the level of NETosis and autophagy in T2DM is relevant. Here we studied an ex vivo NET formation and neutrophil death in whole blood from healthy subjects upon the addition of glucose up to a high concentration of 15 mM or/and the phorbol ester PMA (phorbol-12-myristate-13-acetate). Their individual and combined action caused neutrophil death and an increase in NET content. It can be hypothesized that this resulted from activation of NETosis and autophagy. It was also shown that this activation of NETosis and autophagy is completely prevented by daily intake of 1000 IU vitamin D3 for 14 days. Therefore, vitamin D3 supplementation can be considered as a preventive measure against the development of T2DM complications.
Collapse
Affiliation(s)
- L Yu Basyreva
- Yu. M. Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia.
| | - E V Shmeleva
- Yu. M. Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - V A Ivanov
- Yu. M. Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - T V Vakhrusheva
- Yu. M. Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - O M Panasenko
- Yu. M. Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - E M Ostrovsky
- Yu. M. Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - S A Gusev
- Yu. M. Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - V I Sergienko
- Yu. M. Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia
| |
Collapse
|
3
|
Magaña-Guerrero FS, Aguayo-Flores JE, Buentello-Volante B, Zarco-Ávila K, Sánchez-Cisneros P, Castro-Salas I, De la Torre-Galván E, Rodríguez-Loaiza JL, Jiménez-Corona A, Garfias Y. Spontaneous Neutrophil Extracellular Traps Release Are Inflammatory Markers Associated with Hyperglycemia and Renal Failure on Diabetic Retinopathy. Biomedicines 2023; 11:1791. [PMID: 37509431 PMCID: PMC10376331 DOI: 10.3390/biomedicines11071791] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetic retinopathy (DR) is the major microvascular complication of diabetes and causes vitreous traction and intraretinal hemorrhages leading to retinal detachment and total blindness. The evolution of diabetes is related to exacerbating inflammation caused by hyperglycemia and activation of inflammatory cells. Neutrophils are cells able to release structures of extracellular DNA and proteolytic enzymes called extracellular traps (NETs), which are associated with the persistence of inflammation in chronic pathologies. The purpose of the study was to determine the usefulness of neutrophil traps as indicators of DR progression in patients with type 2 diabetes (T2DM). We performed a case-control study of seventy-four cases classified into five groups (non-proliferative DR, mild, moderate, severe, and proliferative) and fifteen healthy controls. We found correlations between NETs and a diagnostic time of T2DM (r = 0.42; p < 0.0001), fasting glucose (r = 0.29; p < 0.01), glycated hemoglobin (HbA1c) (r = 0.31; p < 0.01), estimated glomerular filtration rate (eGFR) (r = -0.29; p < 0.01), and plasma osmolarity (r = 0.25; p < 0.01). These results suggest that due to NETs being associated with clinical indicators, such as HbA1c and eGFR, and that NETs are also associated with DR, clinical indicators might be explained in part through an NET-mediated inflammation process.
Collapse
Affiliation(s)
- Fátima Sofía Magaña-Guerrero
- Cell and Tissue Biology, Research Unit, Institute of Ophthalmology Conde de Valenciana, Mexico City 06800, Mexico
| | - José Eduardo Aguayo-Flores
- Cell and Tissue Biology, Research Unit, Institute of Ophthalmology Conde de Valenciana, Mexico City 06800, Mexico
| | - Beatriz Buentello-Volante
- Cell and Tissue Biology, Research Unit, Institute of Ophthalmology Conde de Valenciana, Mexico City 06800, Mexico
| | - Karla Zarco-Ávila
- Cell and Tissue Biology, Research Unit, Institute of Ophthalmology Conde de Valenciana, Mexico City 06800, Mexico
| | - Paola Sánchez-Cisneros
- Cell and Tissue Biology, Research Unit, Institute of Ophthalmology Conde de Valenciana, Mexico City 06800, Mexico
| | - Ilse Castro-Salas
- Cell and Tissue Biology, Research Unit, Institute of Ophthalmology Conde de Valenciana, Mexico City 06800, Mexico
| | - Enya De la Torre-Galván
- Cell and Tissue Biology, Research Unit, Institute of Ophthalmology Conde de Valenciana, Mexico City 06800, Mexico
| | | | - Aida Jiménez-Corona
- Department of Ocular Epidemiology and Visual Health, Institute of Ophthalmology Conde de Valenciana, Mexico City 06800, Mexico
- General Directorate of Epidemiology, Health Secretariat, Mexico City 01480, Mexico
| | - Yonathan Garfias
- Cell and Tissue Biology, Research Unit, Institute of Ophthalmology Conde de Valenciana, Mexico City 06800, Mexico
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
4
|
Panasenko OM, Ivanov VA, Mikhalchik EV, Gorudko IV, Grigorieva DV, Basyreva LY, Shmeleva EV, Gusev SA, Kostevich VA, Gorbunov NP, Sokolov AV. Methylglyoxal-Modified Human Serum Albumin Binds to Leukocyte Myeloperoxidase and Inhibits its Enzymatic Activity. Antioxidants (Basel) 2022; 11:2263. [PMID: 36421449 PMCID: PMC9686918 DOI: 10.3390/antiox11112263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2023] Open
Abstract
Hyperglycemia in diabetes mellitus induces modification of proteins by glucose and its derivative methylglyoxal (MG). Neutrophils perform their bactericidal activity mainly via reactive halogen (RHS) and oxygen (ROS) species generation catalyzed by myeloperoxidase (MPO) stored in neutrophil azurophilic granules (AGs) and membrane NADPH oxidase, respectively. Herein, we study the binding of human serum albumin (HSA) modified with MG (HSA-MG) to MPO and its effects on MPO activity and release by neutrophils. Peroxidase activity of MPO was registered by oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, and chlorinating activity by decolorization of Celestine blue B dye. Binding of HSA-MG to MPO was studied by affinity chromatography, disc-electrophoresis, ligand Western blotting and enzyme-linked solid phase immunoassay using monoclonal antibodies (mAbs) to MPO. ROS and RHS generation were detected by lucigenin (Luc) and luminol (Lum) chemiluminescence (CL), respectively. Neutrophil degranulation was assessed by flow cytometry using fluorescent labeled antibodies to the marker proteins CD63 from AGs and CD11b from peroxidase-negative granules (PNGs). NETosis was assayed by quantifying DNA network-like structures (NET-like structures) in blood smears stained by Romanowsky. HSA-MG bound to MPO, giving a stable complex (Kd = 1.5 nM) and competing with mAbs, and non-competitively inhibited peroxidase and chlorinating MPO activity and induced degranulation of PNGs but not of AGs. HSA-MG enhanced Luc-CL per se or following PMA, unlike Lum-CL, and did not affect spontaneous or PMA-stimulated NETosis. Thus, HSA modified under hyperglycemia-like conditions stimulated NADPH oxidase of neutrophils but dampened their functions dependent on activity of MPO, with no effect on its release via degranulation or NETosis. This phenomenon could underlie the downregulation of bactericidal activity of MPO and neutrophils, and hence of innate immunity, giving rise to wound healing impairment and susceptibility to infection in patients with hyperglycemia.
Collapse
Affiliation(s)
- Oleg M. Panasenko
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
- Department of Medical Biophysics of the Institute for Translative Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Viktor A. Ivanov
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Elena V. Mikhalchik
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Irina V. Gorudko
- Department of Biophysics, Belarusian State University, 220030 Minsk, Belarus
| | - Daria V. Grigorieva
- Department of Biophysics, Belarusian State University, 220030 Minsk, Belarus
| | - Liliya Yu. Basyreva
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Ekaterina V. Shmeleva
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Sergey A. Gusev
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Valeria A. Kostevich
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
- Department of Molecular Genetics, Institute of Experimental Medicine, St. Petersburg 197376, Russia
| | - Nikolay P. Gorbunov
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
- Department of Molecular Genetics, Institute of Experimental Medicine, St. Petersburg 197376, Russia
| | - Alexey V. Sokolov
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
- Department of Molecular Genetics, Institute of Experimental Medicine, St. Petersburg 197376, Russia
| |
Collapse
|
5
|
Basyreva LY, Vakhrusheva TV, Letkeman ZV, Maximov DI, Fedorova EA, Panasenko ОM, Ostrovsky EM, Gusev SA. Effect of Vitamin D3 in combination with Omega-3 Polyunsaturated Fatty Acids on NETosis in Type 2 Diabetes Mellitus Patients. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8089696. [PMID: 34721760 PMCID: PMC8556114 DOI: 10.1155/2021/8089696] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/07/2021] [Accepted: 09/27/2021] [Indexed: 01/13/2023]
Abstract
An understanding of the consequences of oxidative/halogenative stress triggered by neutrophil activation is impossible without considering NETosis. NETosis, formation of neutrophil extracellular traps (NETs), is known to promote microthrombus formation and impair wound healing in type 2 diabetes mellitus (T2DM) patients. Therefore, there is a need to search for drugs and treatment approaches that could prevent excessive NET formation. We aimed to evaluate the effect of vitamin D3 in combination with omega-3 polyunsaturated fatty acids (vitamin D3/omega-3 PUFAs) on NETosis in T2DM patients with purulent necrotizing lesions of the lower extremities. Patients and healthy subjects had vitamin D3 deficiency. Patients received, beyond standard treatment, 6000 IU of vitamin D3 and 480 mg of omega-3 PUFAs, and healthy subjects 1000 IU of vitamin D3 and 240 mg of omega-3 PUFAs daily for seven days. Neutrophil activation in ex vivo blood by phorbol-12-myristate-13-acetate (PMA) was used as a NETosis model. The percentage of blood NETs relative to leukocytes (NETbackground) before vitamin D3/omega-3 PUFA supplementation was 3.2%-4.9% in healthy subjects and 1.7%-10.8% in patients. These values rose, respectively, to 7.7%-9.1% and 4.0%-17.9% upon PMA-induced NETosis. In addition, the leukocyte count decreased by 700-1300 per 1 μL in healthy subjects and 700-4000 per 1 μL in patients. For both patients and healthy subjects, taking vitamin D3/omega-3 PUFAs had no effect on NETbackground but completely inhibited PMA-induced NET formation, though neutrophils exhibited morphological features of activation. Also, leukocyte loss was reduced (to 500 per 1 μL). For patients on standard treatment alone, changes occurred neither in background NETs and leukocytes nor in their amount after PMA stimulation. The decreased ability of neutrophils to generate NETs, which can be achieved by vitamin D3/omega-3 PUFA supplementation, could have a positive effect on wound healing in T2DM patients and reduce the incidence and severity of complications.
Collapse
Affiliation(s)
- Liliya Yu. Basyreva
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Tatyana V. Vakhrusheva
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Zoya V. Letkeman
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Dmitry I. Maximov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Evgeniya A. Fedorova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Оleg M. Panasenko
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Evgeny M. Ostrovsky
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Sergey A. Gusev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| |
Collapse
|