1
|
Warnke K, Brandt J, Jörgens S, Arolt V, Beer K, Domschke K, Haverkamp W, Kuhlmann SL, Müller-Nordhorn J, Rieckmann N, Schwarte K, Ströhle A, Tschorn M, Waltenberger J, Grosse L. Association of 5-HTTLPR/rs25531 with depressive symptoms in patients with coronary heart disease: A prospective study. J Affect Disord 2020; 277:531-539. [PMID: 32889377 DOI: 10.1016/j.jad.2020.08.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/06/2020] [Accepted: 08/20/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND 5-HTTLPR/rs25531 is suspected to be involved in the pathogenesis of both coronary heart disease (CHD)1 and depression. We aimed to investigate the role of 5-HTTLPR/rs25531 in the development of depressive symptoms among CHD patients in a longitudinal design. METHODS N = 265 participants with CHD diagnosis were included while hospitalized in a department of cardiology and genotyped for the 5-HTTLPR/rs25531. Depressive symptoms were measured using the Patient Health Questionnaire (PHQ-9)7 at baseline and after 6 and 12 months. Binary logistic regression models were used to analyze the association of 5-HTTLPR/rs25531 with the prevalence of depressive symptoms at each time point as well as with the incidence and persistence of depressive symptoms at follow-up. RESULTS "LALA" genotype was associated with a higher prevalence of depressive symptoms 12 months after study inclusion. "LALA" genotype was associated with a higher incidence of depressive symptoms 6 and 12 months after study inclusion. There was no association of 5-HTTLPR/rs25531 with the persistence of depressive symptoms. LIMITATIONS Inclusion criteria did not demand a particular cardiac event at baseline, which aggravated the interpretation of the time-specific results. The majority of the participants was of male gender which could cause bias. The present study only vaguely differentiated between ethnical groups which might cause bias regarding nationality-dependent allele distributions. CONCLUSION The present study suggests a time-dependent association of the "LALA" genotype with depressive symptoms in CHD patients. 5-HTTLPR/rs25531 might be an important marker to detect risk groups for later onset depressive symptoms among CHD patients.
Collapse
Affiliation(s)
- Katharina Warnke
- Department of Psychiatry and Psychotherapy, University Hospital Münster, Germany.
| | - Julia Brandt
- Department of Psychiatry and Psychotherapy, University Hospital Münster, Germany
| | - Silke Jörgens
- Department of Psychiatry and Psychotherapy, University Hospital Münster, Germany
| | - Volker Arolt
- Department of Psychiatry and Psychotherapy, University Hospital Münster, Germany
| | - Katja Beer
- Charité - Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Wilhelm Haverkamp
- Charité - Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Department of Internal Medicine and Cardiology, Berlin, Germany
| | - Stella L Kuhlmann
- Charité - Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Division of Emergency and Acute Medicine (CVK, CCM), Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Institute of Public Health, Berlin, Germany
| | - Jacqueline Müller-Nordhorn
- Charité - Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Institute of Public Health, Berlin, Germany; Bavarian Food and Health Safety Authority, Oberschleißheim, Germany
| | - Nina Rieckmann
- Charité - Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Institute of Public Health, Berlin, Germany
| | - Kathrin Schwarte
- Department of Psychiatry and Psychotherapy, University Hospital Münster, Germany
| | - Andreas Ströhle
- Charité - Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Mira Tschorn
- Charité - Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany; Social and Preventive Medicine, University of Potsdam, Potsdam, Germany
| | | | - Laura Grosse
- Department of Psychiatry and Psychotherapy, University Hospital Münster, Germany; Intercultural Business Psychology, Hamm-Lippstadt University of Applied Sciences, Hamm, Germany
| |
Collapse
|
2
|
Wong-Lin K, Wang DH, Moustafa AA, Cohen JY, Nakamura K. Toward a multiscale modeling framework for understanding serotonergic function. J Psychopharmacol 2017; 31:1121-1136. [PMID: 28417684 PMCID: PMC5606304 DOI: 10.1177/0269881117699612] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Despite its importance in regulating emotion and mental wellbeing, the complex structure and function of the serotonergic system present formidable challenges toward understanding its mechanisms. In this paper, we review studies investigating the interactions between serotonergic and related brain systems and their behavior at multiple scales, with a focus on biologically-based computational modeling. We first discuss serotonergic intracellular signaling and neuronal excitability, followed by neuronal circuit and systems levels. At each level of organization, we will discuss the experimental work accompanied by related computational modeling work. We then suggest that a multiscale modeling approach that integrates the various levels of neurobiological organization could potentially transform the way we understand the complex functions associated with serotonin.
Collapse
Affiliation(s)
- KongFatt Wong-Lin
- Intelligent Systems Research Centre, School of Computing and Intelligent Systems, University of Ulster, Magee Campus, Derry~Londonderry, UK
| | - Da-Hui Wang
- School of Systems Science, and National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Ahmed A Moustafa
- School of Social Sciences and Psychology, and Marcs Institute for Brain and Behaviour, University of Western Sydney, Sydney, Australia
| | - Jeremiah Y Cohen
- Solomon H. Snyder Department of Neuroscience, Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Kae Nakamura
- Department of Physiology, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
3
|
Zhang Y, Ming QS, Yi JY, Wang X, Chai QL, Yao SQ. Gene-Gene-Environment Interactions of Serotonin Transporter, Monoamine Oxidase A and Childhood Maltreatment Predict Aggressive Behavior in Chinese Adolescents. Front Behav Neurosci 2017; 11:17. [PMID: 28203149 PMCID: PMC5285338 DOI: 10.3389/fnbeh.2017.00017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 01/18/2017] [Indexed: 01/30/2023] Open
Abstract
Gene-environment interactions that moderate aggressive behavior have been identified independently in the serotonin transporter (5-HTT) gene and monoamine oxidase A gene (MAOA). The aim of the present study was to investigate epistasis interactions between MAOA-variable number tandem repeat (VNTR), 5-HTTlinked polymorphism (LPR) and child abuse and the effects of these on aggressive tendencies in a group of otherwise healthy adolescents. A group of 546 Chinese male adolescents completed the Child Trauma Questionnaire and Youth self-report of the Child Behavior Checklist. Buccal cells were collected for DNA analysis. The effects of childhood abuse, MAOA-VNTR, 5-HTTLPR genotypes and their interactive gene-gene-environmental effects on aggressive behavior were analyzed using a linear regression model. The effect of child maltreatment was significant, and a three-way interaction among MAOA-VNTR, 5-HTTLPR and sexual abuse (SA) relating to aggressive behaviors was identified. Chinese male adolescents with high expression of the MAOA-VNTR allele and 5-HTTLPR “SS” genotype exhibited the highest aggression tendencies with an increase in SA during childhood. The findings reported support aggression being a complex behavior involving the synergistic effects of gene-gene-environment interactions.
Collapse
Affiliation(s)
- Yun Zhang
- Medical Psychological Institute, The Second Xiangya Hospital, Central South UniversityChangsha, China; Medical College, North West University for NationalitiesLanzhou, China
| | - Qing-Sen Ming
- Medical Psychological Institute, The Second Xiangya Hospital, Central South University Changsha, China
| | - Jin-Yao Yi
- Medical Psychological Institute, The Second Xiangya Hospital, Central South University Changsha, China
| | - Xiang Wang
- Medical Psychological Institute, The Second Xiangya Hospital, Central South University Changsha, China
| | - Qiao-Lian Chai
- Medical Psychological Institute, The Second Xiangya Hospital, Central South University Changsha, China
| | - Shu-Qiao Yao
- Medical Psychological Institute, The Second Xiangya Hospital, Central South University Changsha, China
| |
Collapse
|
4
|
Neufang S, Akhrif A, Herrmann CG, Drepper C, Homola GA, Nowak J, Waider J, Schmitt AG, Lesch KP, Romanos M. Serotonergic modulation of 'waiting impulsivity' is mediated by the impulsivity phenotype in humans. Transl Psychiatry 2016; 6:e940. [PMID: 27824354 PMCID: PMC5314122 DOI: 10.1038/tp.2016.210] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 08/04/2016] [Accepted: 09/12/2016] [Indexed: 11/09/2022] Open
Abstract
In rodents, the five-choice serial reaction time task (5-CSRTT) has been established as a reliable measure of waiting impulsivity being defined as the ability to regulate a response in anticipation of reinforcement. Key brain structures are the nucleus accumbens (NAcc) and prefrontal regions (for example, pre- and infralimbic cortex), which are, together with other transmitters, modulated by serotonin. In this functional magnetic resonance imaging study, we examined 103 healthy males while performing the 5-CSRTT measuring brain activation in humans by means of a paradigm that has been widely applied in rodents. Subjects were genotyped for the tryptophan hydroxylase-2 (TPH2; G-703T; rs4570625) variant, an enzyme specific for brain serotonin synthesis. We addressed neural activation patterns of waiting impulsivity and the interaction between the NAcc and the ventromedial prefrontal cortex (vmPFC) using dynamic causal modeling. Genetic influence was examined via interaction analyses between the TPH2 genotype (GG homozygotes vs T allele carriers) and the degree of impulsivity as measured by the 5-CSRTT. We found that the driving input of the vmPFC was reduced in highly impulsive T allele carriers (reflecting a reduced top-down control) in combination with an enhanced response in the NAcc after correct target processing (reflecting an augmented response to monetary reward). Taken together, we found a high overlap of our findings with reports from animal studies in regard to the underlying cognitive processes, the brain regions associated with waiting impulsivity and the neural interplay between the NAcc and vmPFC. Therefore, we conclude that the 5-CSRTT is a promising tool for translational studies.
Collapse
Affiliation(s)
- S Neufang
- Center of Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany,Center of Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Fuechsleinstrasse 15, Wuerzburg D-97080, Germany. E-mail:
| | - A Akhrif
- Center of Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - C G Herrmann
- Center of Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - C Drepper
- Center of Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - G A Homola
- Department of Neuroradiology, University of Wuerzburg, Wuerzburg, Germany
| | - J Nowak
- Department of Neuroradiology, University of Wuerzburg, Wuerzburg, Germany,Department of Radiology, University of Wuerzburg, Wuerzburg, Germany
| | - J Waider
- Center of Mental Health, Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - A G Schmitt
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - K-P Lesch
- Center of Mental Health, Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - M Romanos
- Center of Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
5
|
Flower G, Wong-Lin K. Reduced computational models of serotonin synthesis, release, and reuptake. IEEE Trans Biomed Eng 2014; 61:1054-61. [PMID: 24658230 DOI: 10.1109/tbme.2013.2293538] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Multiscale computational models can provide systemic evaluation and prediction of neuropharmacological drug effects. To date, little computational modeling work has been done to bridge from intracellular to neuronal circuit level. A complex model that describes the intracellular dynamics of the presynaptic terminal of a serotonergic neuron has been previously proposed. By systematically perturbing the model's components, we identify the slow and fast dynamical components of the model, and the reduced slow or fast mode of the model is computationally significantly more efficient with accuracy not deviating much from the original model. The reduced fast-mode model is particularly suitable for incorporating into neurobiologically realistic spiking neuronal models, and hence for large-scale realistic computational simulations. We also develop user-friendly software based on the reduced models to allow scientists to rapidly test and predict neuropharmacological drug effects at a systems level.
Collapse
|
6
|
Reise SP, Moore TM, Sabb FW, Brown AK, London ED. The Barratt Impulsiveness Scale-11: reassessment of its structure in a community sample. Psychol Assess 2013; 25:631-42. [PMID: 23544402 DOI: 10.1037/a0032161] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Barratt Impulsiveness Scale (Version 11; BIS-11; Patton, Stanford, & Barratt, 1995) is a gold-standard measure that has been influential in shaping current theories of impulse control, and has played a key role in studies of impulsivity and its biological, psychological, and behavioral correlates. Psychometric research on the structure of the BIS-11, however, has been scant. We therefore applied exploratory and confirmatory factor analyses to data collected using the BIS-11 in a community sample (N = 691). Our goal was to test 4 theories of the BIS-11 structure: (a) a unidimensional model, (b) a 6 correlated first-order factor model, (c) a 3 second-order factor model, and (d) a bifactor model. Among the problems identified were (a) low or near-zero correlations of some items with others; (b) highly redundant content of numerous item pairs; (c) items with salient cross-loadings in multidimensional solutions; and, ultimately, (d) poor fit to confirmatory models. We conclude that use of the BIS-11 total score as reflecting individual differences on a common dimension of impulsivity presents challenges in interpretation. Also, the theory that the BIS-11 measures 3 subdomains of impulsivity (attention, motor, and nonplanning) was not empirically supported. A 2-factor model is offered as an alternative multidimensional structural representation.
Collapse
Affiliation(s)
- Steven P Reise
- Department of Psychology, Universityof California, Los Angeles, Los Angeles, CA90095, USA.
| | | | | | | | | |
Collapse
|
7
|
Rotberg B, Kronenberg S, Carmel M, Frisch A, Brent D, Zalsman G, Apter A, Weizman A. Additive effects of 5-HTTLPR (serotonin transporter) and tryptophan hydroxylase 2 G-703T gene polymorphisms on the clinical response to citalopram among children and adolescents with depression and anxiety disorders. J Child Adolesc Psychopharmacol 2013; 23:117-22. [PMID: 23510446 DOI: 10.1089/cap.2012.0020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The purpose of this study was to evaluate the association between polymorphisms in two serotonin pathway genes and the clinical response to citalopram among children and adolescents with depression and/or anxiety disorders. METHODS Eighty-three children and adolescents with depression and/or anxiety disorders were treated with citalopram for 8 weeks. We assessed the association between the response to citalopram and polymorphisms in the tryptophan hydroxylase-2 (TPH2) and the serotonin transporter gene. The polymorphisms included single nucleotide polymorphisms (SNPs) in the transcriptional control region (G-703T) of the TPH2 gene and the serotonin transporter gene-linked promoter region (5-HTTLPR). RESULTS Fifty patients of the 83 (60.2%) achieved satisfactory response (Clinical Global Impressions - Improvement ≤2). We observed an additive effect of the two genes on the clinical response to citalopram. Patients carrying the combination of TPH2 -703G and the 5-HTTLPR L alleles were the most likely to respond (80%). In contrast, patients carrying the combination of TPH2 -703T and the 5-HTTLPR S alleles were least likely to respond (31%). The other patients (with -703G/5-HTTLPR S and -703T/5-HTTLPR L alleles) showed intermediate response (67%). CONCLUSIONS This finding suggests that 5-HTTLPR and TPH2 genes may act in concert to modulate the clinical response to citalopram among children and adolescents with depression and/or anxiety disorders.
Collapse
Affiliation(s)
- Benyamin Rotberg
- Department of Child and Adolescent Psychiatry, Geha Mental Health Center, Petach Tikva, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Stoltenberg SF, Christ CC, Highland KB. Serotonin system gene polymorphisms are associated with impulsivity in a context dependent manner. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39:182-91. [PMID: 22735397 DOI: 10.1016/j.pnpbp.2012.06.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/11/2012] [Accepted: 06/17/2012] [Indexed: 12/13/2022]
Abstract
Impulsivity is a risk factor for adverse outcomes and characterizes several psychiatric disorders and risk for suicide. There is strong evidence that genetic variation influences individual differences in impulsivity, but the details are not yet understood. There is growing interest in better understanding the context dependency of genetic effects that is reflected in studies examining gender specificity, gene×environment interaction and epistasis (gene-gene interaction). In a cross-sectional study we examined whether polymorphisms in six serotonin system candidate genes and the experience of early life trauma (age 0-12) were associated with individual differences in impulsivity in a non-clinical sample of Caucasian university students (N=424). We specifically tested potential gender specific, gene-gene, and gene×environment (early life trauma) effects. In our main analyses with Barratt Impulsiveness Scale (BIS-11) total score, there were significant (i.e. p<.01 and False Discovery Rate <.10) interactions between (1) gender and TPH2 (rs1386483) genotype; (2) gender and HTR2A (rs6313) genotype; and epistatic interactions among (3) 5-HTTLPR and MAOA uVNTR; (4) 5-HTTLPR and rs6313 and (5) HTR1B (rs6296) and rs6313 genotypes. Our results strongly support the explicit investigation of context dependent genetic effects on impulsivity and may help to resolve some of the conflicting reports in the literature.
Collapse
Affiliation(s)
- Scott F Stoltenberg
- Behavior Genetics Laboratory, Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588‐0308, USA.
| | | | | |
Collapse
|
9
|
Wong-Lin K, Joshi A, Prasad G, McGinnity TM. Network properties of a computational model of the dorsal raphe nucleus. Neural Netw 2012; 32:15-25. [PMID: 22386598 DOI: 10.1016/j.neunet.2012.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 01/30/2012] [Accepted: 02/07/2012] [Indexed: 10/28/2022]
Abstract
Serotonin (5-HT) plays an important role in regulating mood, cognition and behaviour. The midbrain dorsal raphe nucleus (DRN) is one of the primary sources of 5-HT. Recent studies show that DRN neuronal activities can encode rewarding (e.g., appetitive) and unrewarding (e.g., aversive) behaviours. Experiments have also shown that DRN neurons can exhibit heterogeneous spiking behaviours. In this work, we build and study a basic spiking neuronal network model of the DRN constrained by neuronal properties observed in experiments. We use an efficient adaptive quadratic integrate-and-fire neuronal model to capture slow afterhyperpolarization current, occasional bursting behaviours in 5-HT neurons, and fast spiking activities in the non-5-HT inhibitory neurons. Provided that our noisy and heterogeneous spiking neuronal network model adopts a feedforward inhibitory network architecture, it is able to replicate the main features of DRN neuronal activities recorded in monkeys performing a reward-based memory-guided saccade task. The model exhibits theta band oscillation, especially among the non-5-HT inhibitory neurons during the rewarding outcome of a simulated trial, thus forming a model prediction. By varying the inhibitory synaptic strengths and the afferent inputs, we find that the network model can oscillate over a range of relatively low frequencies, allow co-existence of multiple stable frequencies, and spike synchrony can spread from within a local neural subgroup to global. Our model suggests plausible network architecture, provides interesting model predictions that can be experimentally tested, and offers a sufficiently realistic multi-scale model for 5-HT neuromodulation simulations.
Collapse
Affiliation(s)
- KongFatt Wong-Lin
- Intelligent Systems Research Centre, University of Ulster, Magee Campus, Northland Road, BT48 7JL, Northern Ireland, UK.
| | | | | | | |
Collapse
|
10
|
Szily E, Kéri S. Emotion appraisal and the tryptophan hydroxylase 2 (TPH2) gene. J Neural Transm (Vienna) 2012; 119:1261-5. [DOI: 10.1007/s00702-012-0769-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 01/29/2012] [Indexed: 01/22/2023]
|
11
|
Archer T, Oscar-Berman M, Blum K, Gold M. Neurogenetics and Epigenetics in Impulsive Behaviour: Impact on Reward Circuitry. ACTA ACUST UNITED AC 2012; 3:1000115. [PMID: 23264884 DOI: 10.4172/2157-7412.1000115] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adverse, unfavourable life conditions, particularly during early life stages and infancy, can lead to epigenetic regulation of genes involved in stress-response, behavioral disinhibition, and cognitive-emotional systems. Over time, the ultimate final outcome can be expressed through behaviors bedeviled by problems with impulse control, such as eating disorders, alcoholism, and indiscriminate social behavior. While many reward gene polymorphisms are involved in impulsive behaviors, a polymorphism by itself may not translate to the development of a particular behavioral disorder unless it is impacted by epigenetic effects. Brain-derived neurotrophic factor (BDNF) affects the development and integrity of the noradrenergic, dopaminergic, serotonergic, glutamatergic, and cholinergic neurotransmitter systems, and plasma levels of the neurotrophin are associated with both cognitive and aggressive impulsiveness. Epigenetic mechanisms associated with a multitude of environmental factors, including premature birth, low birth weight, prenatal tobacco exposure, non-intact family, young maternal age at birth of the target child, paternal history of antisocial behavior, and maternal depression, alter the developmental trajectories for several neuropsychiatric disorders. These mechanisms affect brain development and integrity at several levels that determine structure and function in resolving the final behavioral expressions.
Collapse
Affiliation(s)
- Trevor Archer
- Department of Psychology, University of Gothenburg, Box 500, SE-40530 Gothenburg, Sweden
| | | | | | | |
Collapse
|
12
|
Best J, Nijhout HF, Reed M. Serotonin synthesis, release and reuptake in terminals: a mathematical model. Theor Biol Med Model 2010; 7:34. [PMID: 20723248 PMCID: PMC2942809 DOI: 10.1186/1742-4682-7-34] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 08/19/2010] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Serotonin is a neurotransmitter that has been linked to a wide variety of behaviors including feeding and body-weight regulation, social hierarchies, aggression and suicidality, obsessive compulsive disorder, alcoholism, anxiety, and affective disorders. Full understanding of serotonergic systems in the central nervous system involves genomics, neurochemistry, electrophysiology, and behavior. Though associations have been found between functions at these different levels, in most cases the causal mechanisms are unknown. The scientific issues are daunting but important for human health because of the use of selective serotonin reuptake inhibitors and other pharmacological agents to treat disorders in the serotonergic signaling system. METHODS We construct a mathematical model of serotonin synthesis, release, and reuptake in a single serotonergic neuron terminal. The model includes the effects of autoreceptors, the transport of tryptophan into the terminal, and the metabolism of serotonin, as well as the dependence of release on the firing rate. The model is based on real physiology determined experimentally and is compared to experimental data. RESULTS We compare the variations in serotonin and dopamine synthesis due to meals and find that dopamine synthesis is insensitive to the availability of tyrosine but serotonin synthesis is sensitive to the availability of tryptophan. We conduct in silico experiments on the clearance of extracellular serotonin, normally and in the presence of fluoxetine, and compare to experimental data. We study the effects of various polymorphisms in the genes for the serotonin transporter and for tryptophan hydroxylase on synthesis, release, and reuptake. We find that, because of the homeostatic feedback mechanisms of the autoreceptors, the polymorphisms have smaller effects than one expects. We compute the expected steady concentrations of serotonin transporter knockout mice and compare to experimental data. Finally, we study how the properties of the the serotonin transporter and the autoreceptors give rise to the time courses of extracellular serotonin in various projection regions after a dose of fluoxetine. CONCLUSIONS Serotonergic systems must respond robustly to important biological signals, while at the same time maintaining homeostasis in the face of normal biological fluctuations in inputs, expression levels, and firing rates. This is accomplished through the cooperative effect of many different homeostatic mechanisms including special properties of the serotonin transporters and the serotonin autoreceptors. Many difficult questions remain in order to fully understand how serotonin biochemistry affects serotonin electrophysiology and vice versa, and how both are changed in the presence of selective serotonin reuptake inhibitors. Mathematical models are useful tools for investigating some of these questions.
Collapse
Affiliation(s)
- Janet Best
- Department of Mathematics, The Ohio State University, Columbus, OH 43210 USA
| | | | - Michael Reed
- Department of Mathematics, Duke University, Durham, NC 27708 USA
| |
Collapse
|