1
|
Oh KP, Shaw KL. Axes of multivariate sexual signal divergence among incipient species: Concordance with selection, genetic variation and phenotypic plasticity. J Evol Biol 2021; 35:109-123. [PMID: 34668602 DOI: 10.1111/jeb.13951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/11/2021] [Indexed: 11/30/2022]
Abstract
Sexual signalling traits are often observed to diverge rapidly among populations, thereby playing a potentially key early role in the evolution of reproductive isolation. While often assumed to reflect divergent sexual selection among populations, patterns of sexual trait diversification might sometimes be biased along axes of standing additive genetic variation and covariation among trait components. Additionally, theory predicts that environmentally induced phenotypic variation might facilitate rapid trait evolution, suggesting that patterns of divergence between populations should mirror phenotypic plasticity within populations. Here, we evaluate the concordance between observed axes of multivariate sexual trait divergence and predicted divergence based on (1) interpopulation variation in sexual selection, (2) additive genetic variances and (3) temperature-related phenotypic plasticity in male courtship song among geographically isolated populations of the Hawaiian swordtail cricket, Laupala cerasina, which exhibit sexual isolation due acoustic signalling traits. The major axis of multivariate divergence, dmax , accounted for 76% of variation among population male song trait means and was moderately correlated with interpopulation differences in directional sexual selection based on female preferences. However, the majority of additive genetic variance was largely oriented away from the direction of divergence, suggesting that standing genetic variation may not play a dominant role in the patterning of signal divergence. In contrast, the axis of phenotypic plasticity strongly mirrored patterns of interpopulation phenotypic divergence, which is consistent with a role for temperature-related plasticity in facilitating instead of inhibiting male song evolution and sexual isolation in these incipient species. We propose potential mechanisms by which sexual selection might interact with phenotypic plasticity to facilitate the rapid acoustic diversification observed in this species and clade.
Collapse
Affiliation(s)
- Kevin P Oh
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| | - Kerry L Shaw
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| |
Collapse
|
2
|
Xu M, Shaw KL. Extensive Linkage and Genetic Coupling of Song and Preference Loci Underlying Rapid Speciation in Laupala Crickets. J Hered 2021; 112:204-213. [PMID: 33438016 DOI: 10.1093/jhered/esab001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Abstract
In nature, closely related species commonly display divergent mating behaviors, suggesting a central role for such traits in the origin of species. Elucidating the genetic basis of divergence in these traits is necessary to understand the evolutionary process leading to reproductive barriers and speciation. The rapidly speciating Hawaiian crickets of the genus Laupala provides an ideal system for dissecting the genetic basis of mating behavior divergence. In Laupala, closely related species differ markedly in male song pulse rate and female preference for pulse rate. These behaviors play an important role in determining mating patterns. Previous studies identified a genetic architecture consisting of numerous small to moderate effect loci causing interspecific differences in pulse rate and preference, including colocalizing pulse rate and preference QTL on linkage group one (LG1). To further interrogate these QTL, we conduct a fine mapping study using high-density SNP linkage maps. With improved statistical power and map resolution, we provide robust evidence for genetic coupling between song and preference, along with two additional pulse rate QTL on LG1, revealing a more resolved picture of the genetic architecture underlying mating behavior divergence. Our sequence-based genetic map, along with dramatically narrowed QTL confidence intervals, allowed us to annotate genes within the QTL regions and identify several exciting candidate genes underlying variation in pulse rate and preference divergence. Such knowledge suggests potential molecular mechanisms underlying the evolution of behavioral barriers.
Collapse
Affiliation(s)
- Mingzi Xu
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY
| | - Kerry L Shaw
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY
| |
Collapse
|
3
|
Lindsay WR, Andersson S, Bererhi B, Höglund J, Johnsen A, Kvarnemo C, Leder EH, Lifjeld JT, Ninnes CE, Olsson M, Parker GA, Pizzari T, Qvarnström A, Safran RJ, Svensson O, Edwards SV. Endless forms of sexual selection. PeerJ 2019; 7:e7988. [PMID: 31720113 PMCID: PMC6839514 DOI: 10.7717/peerj.7988] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022] Open
Abstract
In recent years, the field of sexual selection has exploded, with advances in theoretical and empirical research complementing each other in exciting ways. This perspective piece is the product of a "stock-taking" workshop on sexual selection and sexual conflict. Our aim is to identify and deliberate on outstanding questions and to stimulate discussion rather than provide a comprehensive overview of the entire field. These questions are organized into four thematic sections we deem essential to the field. First we focus on the evolution of mate choice and mating systems. Variation in mate quality can generate both competition and choice in the opposite sex, with implications for the evolution of mating systems. Limitations on mate choice may dictate the importance of direct vs. indirect benefits in mating decisions and consequently, mating systems, especially with regard to polyandry. Second, we focus on how sender and receiver mechanisms shape signal design. Mediation of honest signal content likely depends on integration of temporally variable social and physiological costs that are challenging to measure. We view the neuroethology of sensory and cognitive receiver biases as the main key to signal form and the 'aesthetic sense' proposed by Darwin. Since a receiver bias is sufficient to both initiate and drive ornament or armament exaggeration, without a genetically correlated or even coevolving receiver, this may be the appropriate 'null model' of sexual selection. Thirdly, we focus on the genetic architecture of sexually selected traits. Despite advances in modern molecular techniques, the number and identity of genes underlying performance, display and secondary sexual traits remains largely unknown. In-depth investigations into the genetic basis of sexual dimorphism in the context of long-term field studies will reveal constraints and trajectories of sexually selected trait evolution. Finally, we focus on sexual selection and conflict as drivers of speciation. Population divergence and speciation are often influenced by an interplay between sexual and natural selection. The extent to which sexual selection promotes or counteracts population divergence may vary depending on the genetic architecture of traits as well as the covariance between mating competition and local adaptation. Additionally, post-copulatory processes, such as selection against heterospecific sperm, may influence the importance of sexual selection in speciation. We propose that efforts to resolve these four themes can catalyze conceptual progress in the field of sexual selection, and we offer potential avenues of research to advance this progress.
Collapse
Affiliation(s)
- Willow R. Lindsay
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Staffan Andersson
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Badreddine Bererhi
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Jacob Höglund
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Arild Johnsen
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Charlotta Kvarnemo
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Erica H. Leder
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Jan T. Lifjeld
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Calum E. Ninnes
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, United States of America
| | - Mats Olsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Geoff A. Parker
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Tommaso Pizzari
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, United Kingdom
| | - Anna Qvarnström
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Rebecca J. Safran
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States of America
| | - Ola Svensson
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States of America
- Gothenburg Centre for Advanced Studies in Science and Technology, Chalmers University of Technology, Göteborg, Sweden
| |
Collapse
|
4
|
Xu M, Shaw KL. Genetic coupling of signal and preference facilitates sexual isolation during rapid speciation. Proc Biol Sci 2019; 286:20191607. [PMID: 31640515 DOI: 10.1098/rspb.2019.1607] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The divergence of sexual signals is ultimately a coevolutionary process: while signals and preferences diverge between lineages, they must remain coordinated within lineages for matings to occur. Divergence in sexual signals makes a major contribution to evolving species barriers. Therefore, the genetic architecture underlying signal-preference coevolution is essential to understanding speciation but remains largely unknown. In Laupala crickets where male song pulse rate and female pulse rate preferences have coevolved repeatedly and rapidly, we tested two contrasting hypotheses for the genetic architecture underlying signal-preference coevolution: linkage disequilibrium between unlinked loci and genetic coupling (linkage disequilibrium resulting from pleiotropy of a shared locus or tight physical linkage). Through selective introgression and quantitative trait locus (QTL) fine mapping, we estimated the location of QTL underlying interspecific variation in both female preference and male pulse rate from the same mapping populations. Remarkably, map estimates of the pulse rate and preference loci are as close as 0.06 cM apart, the strongest evidence to date for genetic coupling between signal and preference loci. As the second pair of colocalizing signal and preference loci in the Laupala genome, our finding supports an intriguing pattern, pointing to a major role for genetic coupling in the quantitative evolution of a reproductive barrier and rapid speciation in Laupala. Owing to its effect on suppressing recombination, a coupled, quantitative genetic architecture offers a powerful and parsimonious genetic mechanism for signal-preference coevolution and the establishment of positive genetic covariance on which the Fisherian runaway process of sexual selection relies.
Collapse
Affiliation(s)
- Mingzi Xu
- Department of Neurobiology and Behavior, Cornell University, 215 Tower Rd, Ithaca, NY 14853, USA
| | - Kerry L Shaw
- Department of Neurobiology and Behavior, Cornell University, 215 Tower Rd, Ithaca, NY 14853, USA
| |
Collapse
|
5
|
The Genetics of Mating Song Evolution Underlying Rapid Speciation: Linking Quantitative Variation to Candidate Genes for Behavioral Isolation. Genetics 2019; 211:1089-1104. [PMID: 30647070 DOI: 10.1534/genetics.118.301706] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023] Open
Abstract
Differences in mating behaviors evolve early during speciation, eventually contributing to reproductive barriers between species. Knowledge of the genetic and genomic basis of these behaviors is therefore integral to a causal understanding of speciation. Acoustic behaviors are often part of the mating ritual in animal species. The temporal rhythms of mating songs are notably species-specific in many vertebrates and arthropods and often underlie assortative mating. Despite discoveries of mutations that disrupt the temporal rhythm of these songs, we know surprisingly little about genes affecting naturally occurring variation in the temporal pattern of singing behavior. In the rapidly speciating Hawaiian cricket genus Laupala, the striking species variation in song rhythms constitutes a behavioral barrier to reproduction between species. Here, we mapped the largest-effect locus underlying interspecific variation in song rhythm between two Laupala species to a narrow genomic region, wherein we find no known candidate genes affecting song temporal rhythm in Drosophila Whole-genome sequencing, gene prediction, and functional annotation of this region reveal an exciting and promising candidate gene, the putative cyclic nucleotide-gated ion channel-like gene, for natural variation in mating behavior. Identification and molecular characterization of the candidate gene reveals a nonsynonymous mutation in a conserved binding domain, suggesting that ion channels are important targets of selection on rhythmic signaling during establishment of behavioral isolation and rapid speciation.
Collapse
|