1
|
Li Y, Xu YF, Chi HL, Yu JY, Gao YN, Li HB, Kang YM, Yu XJ. Testis-Specific Protein, Y-Encoded-Like 2 Activates JAK2/STAT3 Pathway in Hypothalamic Paraventricular Nucleus to Sustain Hypertension. Am J Hypertens 2024; 37:682-691. [PMID: 38782571 DOI: 10.1093/ajh/hpae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/31/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND In the hypothalamic paraventricular nucleus (PVN) of spontaneously hypertensive rats (SHRs), the expression of the testis-specific protein, Y-encoded-like 2 (TSPYL2) and the phosphorylation level of Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) are higher comparing with the normotensive Wistar Kyoto rats (WKY). But how they are involved in hypertension remains unclear. TSPYL2 may interact with JAK2/STAT3 in PVN to sustain high blood pressure during hypertension. METHODS Knockdown of TSPYL2 via adeno-associated virus (AAV) carrying shRNA was conducted through bilateral microinjection into the PVN of SHR and WKY rats. JAK2/STAT3 inhibition was achieved by intraperitoneally or PVN injection of AG490 into the SHRs. Blood pressure (BP), plasma norepinephrine (NE), PVN inflammatory response, and PVN oxidative stress were measured. RESULTS TSPYL2 knock-down in the PVN of SHRs but not WKYs led to reduced BP and plasma NE, deactivation of JAK2/STAT3, decreased expression of pro-inflammatory cytokine IL-1β, and increased expression of anti-inflammatory cytokine IL-10 in the PVN. Meanwhile, AG490 administrated in both ways reduced the BP in the SHRs and deactivated JAK2/STAT3 but failed to change the expression of TSPYL2 in PVN. AG490 also downregulated expression of IL-1β and upregulated expression of IL-10. Both knockdown of TSPYL2 and inhibition of JAK2/STAT3 can reduce the oxidative stress in the PVN of SHRs. CONCLUSION JAK2/STAT3 is regulated by TSPYL2 in the PVN of SHRs, and PVN TSPYL2/JAK2/STAT3 is essential for maintaining high BP in hypertensive rats, making it a potential therapeutic target for hypertension.
Collapse
Affiliation(s)
- Ying Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, P.R. China
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, Shaanxi, P.R. China
| | - Yang-Fei Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, P.R. China
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, Shaanxi, P.R. China
| | - Hong-Li Chi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, P.R. China
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, Shaanxi, P.R. China
- School of Life Sciences, Tianjin University, Tianjin, Hebei, P.R. China
| | - Jia-Yue Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, P.R. China
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, Shaanxi, P.R. China
- College of Basic Medicine, Xi'an Medical University, Xi'an, Shaanxi, P.R. China
| | - Ya-Nan Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, P.R. China
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, Shaanxi, P.R. China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, P.R. China
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, Shaanxi, P.R. China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, P.R. China
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
2
|
Zhang X, Wu X, Yao W, Wang YH. A tumor-suppressing role of TSPYL2 in thyroid cancer: Through interacting with SIRT1 and repressing SIRT1/AKT pathway. Exp Cell Res 2023; 432:113777. [PMID: 37696385 DOI: 10.1016/j.yexcr.2023.113777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/27/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023]
Abstract
Thyroid cancer is one of the most common endocrine cancers. Testis-specific protein, Y-encoded-like 2 (TSPYL2) belongs to the TSPY family. Studies show that TSPYL2 plays as a cancer suppressor in several cancers. However, the role of TSPYL2 in thyroid cancer remains elusive. In the present study, the expression of TSPYL2 in human central papillary thyroid cancer (PTC) tissues and corresponding para-cancer tissues was detected by qPCR and Western blot. The gain- and loss-of-function studies for TSPYL2 were performed in TPC-1 cells and IHH-4 cells. The results showed that TSPYL2 expression was decreased in PTC tissues, and the low TSPYL2 expression was associated with more lymph node metastasis. Moreover, the results showed that knockdown of TSPYL2 promoted proliferation and enhanced the ability of migration and invasion of TPC-1 cells and IHH-4 cells, while TSPYL2 overexpression reversed it. TSPYL2 overexpression arrested cell cycle. We found that TSPYL2 silencing suppressed cell apoptosis, while overexpression of TSPYL2 reversed it. Co-IP results illustrated that TSPYL2 interacted with SIRT1. Knockdown of TSPYL2 increased the association between SIRT1 and AKT. Moreover, TSPYL2 expression inhibited AKT activation by upregulating the AKT acetylation level. In vivo, tumor xenograft experiments indicated that TSPYL2 suppressed the tumorigenic ability of thyroid cancer cells. Western blot results suggested that knockdown of TSPYL2 enhanced the phosphorylation level of AKT, while TSPYL2 overexpression reversed it. Taken together, our study suggested TSPYL2 could be a tumor suppressor in thyroid cancer by regulating SIRT1/AKT pathway.
Collapse
Affiliation(s)
- Xin Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Xin Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Wei Yao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Yi-Hui Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China.
| |
Collapse
|
3
|
Yang D, Zhao Y, Nie B, An L, Wan X, Wang Y, Wang W, Cai G, Wu S. Progress in magnetic resonance imaging of autism model mice brain. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2022; 13:e1616. [PMID: 35930672 DOI: 10.1002/wcs.1616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/11/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disease characterized by social disorder and stereotypical behaviors with an increasing incidence. ASD patients are suffering from varying degrees of mental retardation and language development abnormalities. Magnetic resonance imaging (MRI) is a noninvasive imaging technology to detect brain structural and functional dysfunction in vivo, playing an important role in the early diagnosisbasic research of ASD. High-field, small-animal MRI in basic research of autism model mice has provided a new approach to research the pathogenesis, characteristics, and intervention efficacy in autism. This article reviews MRI studies of mouse models of autism over the past 20 years. Reduced gray matter, abnormal connections of brain networks, and abnormal development of white matter fibers have been demonstrated in these studies, which are present in different proportions in the various mouse models. This provides a more macroscopic view for subsequent research on autism model mice. This article is categorized under: Cognitive Biology > Genes and Environment Neuroscience > Computation Neuroscience > Genes, Molecules, and Cells Neuroscience > Development.
Collapse
Affiliation(s)
- Dingding Yang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yan Zhao
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Leiting An
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xiangdong Wan
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yazhou Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Guohong Cai
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
4
|
Perepelkina OV, Poletaeva II. Selection of Laboratory Mice for the Cognitive Task Successful Solution and for the Inability to Solve It. DOKL BIOCHEM BIOPHYS 2021; 499:207-210. [PMID: 34426912 DOI: 10.1134/s1607672921040116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/27/2021] [Accepted: 03/27/2021] [Indexed: 11/23/2022]
Abstract
Using the selected mouse strain EX as the founding population (selection for extrapolation ability) three selection generations of mice were obtained, which were selected for successful solution of object permanence test (plus-sub-strain) and for lack of such solution (minus-sub-strain). The successful solution required not only the ability to operate the object permanence rule (by J. Piajet), but the performance of complicated action (executive function) which was significantly higher in plus-substrain, and this is the unique example of successful selection for cognitive trait.
Collapse
Affiliation(s)
| | - I I Poletaeva
- Biology Department, Moscow State University, Moscow, Russia.
| |
Collapse
|
5
|
The Role of Cell Division Autoantigen 1 (CDA1) in Renal Fibrosis of Diabetic Nephropathy. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6651075. [PMID: 33997036 PMCID: PMC8102118 DOI: 10.1155/2021/6651075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 04/05/2021] [Accepted: 04/16/2021] [Indexed: 01/10/2023]
Abstract
The common kidney disease diabetic nephropathy (DN) accounts for significant morbidity and mortality in patients with diabetes, and its effective diagnosis in incipient stages is still lacking. Renal fibrosis is the main pathological feature of DN. Cell division autoantigen 1 (CDA1), a phosphorylated protein encoded by TSPYL2 on the X chromosome, plays a fibrogenic role by modulating the transforming growth factor-β (TGF-β) signaling, but the exact mechanism remains unclear. TGF-β signaling has been recognized as the key factor in promoting the development and progression of DN. At present, strict control of blood sugar and blood pressure can significantly lower the development and progression of DN in the early stages, and many studies have shown that blocking TGF-β signaling can delay the progress of DN. However, TGF-β is a multifunctional cytokine. Its direct intervention may result in increased side effects. Therefore, the targeted intervention of CDA1 not only can block the TGF-β signaling pathway but also can reduce these side effects. In this article, we review the main physiological roles of CDA1, with particular attention to its effect and potential mechanism in the renal fibrosis of DN.
Collapse
|
6
|
Peng L, Leung EHW, So J, Mak PHS, Lee CL, Tan H, Lee KF, Chan SY. TSPYL1 regulates steroidogenic gene expression and male factor fertility in mice. F&S SCIENCE 2020; 1:115-123. [PMID: 35559922 DOI: 10.1016/j.xfss.2020.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/31/2020] [Accepted: 08/20/2020] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To determine the importance of testis-specific, Y-encoded-like 1 (TSPYL1) in survival and male factor fertility in mice. DESIGN Experimental prospective study. SETTING Research laboratories in a university medical faculty. ANIMALS We generated Tspyl1 knockout (KO) mouse lines by CRISPR/Cas9. The lines were maintained by pairing heterozygous mice to provide wild-type control and KO males for comparison. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Mendelian ratio, body and testis weight, histology, sperm motility, mating tests, pregnancy outcome, transcript levels of genes for testosterone production, and serum testosterone level. RESULT(S) A variable percentage of Tspyl1 KO mice survived beyond weaning depending on the genetic background. Growth around weaning was retarded in KO mice, but the testes-to-body weight ratio remained normal and complete spermatogenesis was revealed in testis histology. Sperm was collected from the cauda epididymis, and a significantly smaller percentage of sperm was progressively motile (22.3% ± 18.3%, n = 14 samples) compared with wild type (58.9% ± 11.5%, 11 samples). All 11 KO mice tested had defective mounting behavior. From 11 KO males paired with a total of 88 females, only one litter was born, compared with 53 litters sired by 11 age-matched wild-type males. Expression of Star, Cyp11a1, Cyp17a1, Hsd3b6, and Hsd17b3 in the KO testis was significantly reduced, while serum testosterone level was within the normal range. CONCLUSION(S) TSPYL1 is critical for survival and reproductive success in mice. TSPYL1 enhances the expression of key steroidogenic genes in the mouse testis.
Collapse
Affiliation(s)
- Lei Peng
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Eva Hin Wa Leung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Joan So
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Priscilla Hoi Shan Mak
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Huiqi Tan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Siu Yuen Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China.
| |
Collapse
|
7
|
Lau YFC, Li Y, Kido T. Battle of the sexes: contrasting roles of testis-specific protein Y-encoded (TSPY) and TSPX in human oncogenesis. Asian J Androl 2019; 21:260-269. [PMID: 29974883 PMCID: PMC6498724 DOI: 10.4103/aja.aja_43_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/17/2018] [Indexed: 12/13/2022] Open
Abstract
The Y-located testis-specific protein Y-encoded (TSPY) and its X-homologue TSPX originated from the same ancestral gene, but act as a proto-oncogene and a tumor suppressor gene, respectively. TSPY has specialized in male-specific functions, while TSPX has assumed the functions of the ancestral gene. Both TSPY and TSPX harbor a conserved SET/NAP domain, but are divergent at flanking structures. Specifically, TSPX contains a C-terminal acidic domain, absent in TSPY. They possess contrasting properties, in which TSPY and TSPX, respectively, accelerate and arrest cell proliferation, stimulate and inhibit cyclin B-CDK1 phosphorylation activities, have no effect and promote proteosomal degradation of the viral HBx oncoprotein, and exacerbate and repress androgen receptor (AR) and constitutively active AR variant, such as AR-V7, gene transactivation. The inhibitory domain has been mapped to the carboxyl acidic domain in TSPX, truncation of which results in an abbreviated TSPX exerting positive actions as TSPY. Transposition of the acidic domain to the C-terminus of TSPY results in an inhibitory protein as intact TSPX. Hence, genomic mutations/aberrant splicing events could generate TSPX proteins with truncated acidic domain and oncogenic properties as those for TSPY. Further, TSPY is upregulated by AR and AR-V7 in ligand-dependent and ligand-independent manners, respectively, suggesting the existence of a positive feedback loop between a Y-located proto-oncogene and male sex hormone/receptors, thereby amplifying the respective male oncogenic actions in human cancers and diseases. TSPX counteracts such positive feedback loop. Hence, TSPY and TSPX are homologues on the sex chromosomes that function at the two extremes of the human oncogenic spectrum.
Collapse
Affiliation(s)
- Yun-Fai Chris Lau
- Division of Cell and Developmental Genetics, Department of Medicine, VA Medical Center and Institute for Human Genetics, University of California, San Francisco, CA 94121, USA
| | - Yunmin Li
- Division of Cell and Developmental Genetics, Department of Medicine, VA Medical Center and Institute for Human Genetics, University of California, San Francisco, CA 94121, USA
| | - Tatsuo Kido
- Division of Cell and Developmental Genetics, Department of Medicine, VA Medical Center and Institute for Human Genetics, University of California, San Francisco, CA 94121, USA
| |
Collapse
|
8
|
Liu H, Peng L, So J, Tsang KH, Chong CH, Mak PHS, Chan KM, Chan SY. TSPYL2 Regulates the Expression of EZH2 Target Genes in Neurons. Mol Neurobiol 2018; 56:2640-2652. [PMID: 30051352 PMCID: PMC6459796 DOI: 10.1007/s12035-018-1238-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 07/11/2018] [Indexed: 01/07/2023]
Abstract
Testis-specific protein, Y-encoded-like 2 (TSPYL2) is an X-linked gene in the locus for several neurodevelopmental disorders. We have previously shown that Tspyl2 knockout mice had impaired learning and sensorimotor gating, and TSPYL2 facilitates the expression of Grin2a and Grin2b through interaction with CREB-binding protein. To identify other genes regulated by TSPYL2, here, we showed that Tspyl2 knockout mice had an increased level of H3K27 trimethylation (H3K27me3) in the hippocampus, and TSPYL2 interacted with the H3K27 methyltransferase enhancer of zeste 2 (EZH2). We performed chromatin immunoprecipitation (ChIP)-sequencing in primary hippocampal neurons and divided all Refseq genes by k-mean clustering into four clusters from highest level of H3K27me3 to unmarked. We confirmed that mutant neurons had an increased level of H3K27me3 in cluster 1 genes, which consist of known EZH2 target genes important in development. We detected significantly reduced expression of genes including Gbx2 and Prss16 from cluster 1 and Acvrl1, Bdnf, Egr3, Grin2c, and Igf1 from cluster 2 in the mutant. In support of a dynamic role of EZH2 in repressing marked synaptic genes, the specific EZH2 inhibitor GSK126 significantly upregulated, while the demethylase inhibitor GSKJ4 downregulated the expression of Egr3 and Grin2c. GSK126 also upregulated the expression of Bdnf in mutant primary neurons. Finally, ChIP showed that hemagglutinin-tagged TSPYL2 co-existed with EZH2 in target promoters in neuroblastoma cells. Taken together, our data suggest that TSPYL2 is recruited to promoters of specific EZH2 target genes in neurons, and enhances their expression for proper neuronal maturation and function.
Collapse
Affiliation(s)
- Hang Liu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,University Research Facility in Chemical and Environmental Analysis, The Hong Kong Polytechnic University, Hong Kong, China
| | - Lei Peng
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Joan So
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Ka Hing Tsang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Research and Development, Clinical Projects and Development, New B Innovation, Hong Kong, China
| | - Chi Ho Chong
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Priscilla Hoi Shan Mak
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kui Ming Chan
- Department of Biomedical Sciences, the City University of Hong Kong, Hong Kong, China. .,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.
| | - Siu Yuen Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
9
|
Li Y, Zhang DJ, Qiu Y, Kido T, Lau YFC. The Y-located proto-oncogene TSPY exacerbates and its X-homologue TSPX inhibits transactivation functions of androgen receptor and its constitutively active variants. Hum Mol Genet 2017; 26:901-912. [PMID: 28169398 PMCID: PMC6075507 DOI: 10.1093/hmg/ddx005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/05/2016] [Accepted: 01/03/2017] [Indexed: 12/15/2022] Open
Abstract
The gonadoblastoma gene, testis-specific protein Y-encoded (TSPY), on the Y chromosome and its X-homologue, TSPX, are cell cycle regulators and function as a proto-oncogene and a tumor suppressor respectively in human oncogenesis. TSPY and TSPX competitively bind to the androgen receptor (AR) and AR variants, such as AR-V7, at their conserved SET/NAP domain, and exacerbate and repress the transactivation of the AR/AR-V7 target genes in ligand dependent and independent manners respectively. The inhibitory domain has been mapped to the carboxyl acidic domain of TSPX, truncation of which renders TSPX to be stimulatory while its transposition to the C-terminus of TSPY results in an inhibitory hybrid protein. TSPY and TSPX co-localize with the endogenous AR, in the presence of ligand, on the promoters and differentially regulate the expression of the endogenous AR target genes in the androgen-responsive LNCaP prostate cancer cells. Transcriptome analysis shows that TSPY and TSPX expressions differentially affect significant numbers of canonical pathways, upstream regulators and cellular functions. Significantly, among the common ones, TSPY activates and TSPX inhibits numerous growth-related and oncogenic canonical pathways and cellular functions in the respective cell populations. Hence, TSPY and TSPX exert opposing effects on the transactivation functions of AR and AR-Vs important for various physiological and disease processes sensitive to male sex hormone actions, thereby not only affecting the pathogenesis of male-specific prostate cancer but also likely contributing to sex differences in the health and diseases of man.
Collapse
Affiliation(s)
- Yunmin Li
- Division of Cell and Developmental Genetics, Department of Medicine, VA Medical Center
- Institute for Human Genetics, University of California, San Francisco, CA 94121, USA
| | - Dong Ji Zhang
- Division of Cell and Developmental Genetics, Department of Medicine, VA Medical Center
- Institute for Human Genetics, University of California, San Francisco, CA 94121, USA
| | - Yun Qiu
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Tatsuo Kido
- Division of Cell and Developmental Genetics, Department of Medicine, VA Medical Center
- Institute for Human Genetics, University of California, San Francisco, CA 94121, USA
| | - Yun-Fai Chris Lau
- Division of Cell and Developmental Genetics, Department of Medicine, VA Medical Center
- Institute for Human Genetics, University of California, San Francisco, CA 94121, USA
| |
Collapse
|