1
|
Deregulated estrogen receptor signaling and DNA damage response in breast tumorigenesis. Biochim Biophys Acta Rev Cancer 2020; 1875:188482. [PMID: 33260050 DOI: 10.1016/j.bbcan.2020.188482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023]
Abstract
Carriers of BRCA1 mutations have a higher chance of developing cancers in hormone-responsive tissues like the breast, ovary and prostate, compared to other tissues. These tumors generally exhibit basal-like characters and do not express estrogen receptor (ER) or progesterone receptor (PR). Intriguingly, BRCA1 mutated breast cancers have a less favorable clinical outcome, as they will not respond to hormone therapy. BRCA1 has been reported to exhibit ligand dependent and independent transcriptional inhibition of ER-α; however, there exists a controversy on whether BRCA1 induces or inhibits ER-α expression. The mechanisms associated with resistance of BRCA1 mutated cancers to hormone therapy, as well as the tissue restriction exhibited by BRCA1 mutated tumors are still largely unknown. BRCA1 mutated tumors possess increased DNA damages and decreased genomic integrity, as BRCA1 plays a cardinal role in high fidelity DNA damage repair pathways, like homologous recombination (HR). The existence of cross regulatory signaling networks between ER-α and BRCA1 speculates a role of ER on BRCA1 dependent DDR pathways. Thus, the loss or haploinsufficiency of BRCA1 and the consequential deregulation of ER-α signaling may result in persistence of unrepaired DNA damages, eventually leading to tumorigenesis. Therefore, understanding of this cross-talk between ER-α and BRCA1, with regard to DDR, will provide critical insights to steer drug development and therapy for breast/ovarian cancers. This review discusses the mechanisms by which estrogen and ER signaling influence BRCA1 mediated DNA damage response and repair pathways in the mammalian system.
Collapse
|
2
|
Mitochondrial base excision repair positively correlates with longevity in the liver and heart of mammals. GeroScience 2020; 42:653-665. [PMID: 31970600 DOI: 10.1007/s11357-020-00158-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/13/2020] [Indexed: 10/25/2022] Open
Abstract
Damage to DNA is especially important for aging. High DNA repair could contribute, in principle, to lower such damage in long-lived species. However, previous studies showed that repair of endogenous damage to nuclear DNA (base excision repair, BER) is negatively or not correlated with mammalian longevity. However, we hypothesize here that mitochondrial, instead of nuclear, BER is higher in long-lived than in short-lived mammals. We have thus measured activities and/or protein levels of various BER enzymes including DNA glycosylases, NTHL1 and NEIL2, and the APE endonuclease both in total and mitochondrial liver and heart fractions from up to eight mammalian species differing by 13-fold in longevity. Our results show, for the first time, a positive correlation between (mitochondrial) BER and mammalian longevity. This suggests that the low steady-state oxidative damage in mitochondrial DNA of long-lived species would be due to both their lower mitochondrial ROS generation and their higher mitochondrial BER. Long-lived mammals do not need to continuously maintain high nuclear BER levels because they release less mitROS to the cytosol. This can be the reason why they tend to show lower nuclear BER values. The higher mitochondrial BER of long-lived mammals contributes to their superior longevity, agrees with the updated version of the mitochondrial free radical theory of aging, and indicates the special relevance of mitochondria and mitROS for aging.
Collapse
|
3
|
El-Kafoury BMA, Bahgat NM, Abdel-Hady EA, Samad AAAE, Shawky MK, Mohamed FA. Impaired metabolic and hepatic functions following subcutaneous lipectomy in adult obese rats. Exp Physiol 2019; 104:1661-1677. [PMID: 31443137 DOI: 10.1113/ep087670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the central question of this study? What is the impact and drawbacks of subcutaneous lipectomy on body metabolism? What is the main finding and its importance? Subcutaneous lipectomy resulted in deterioration of hepatic functions, atherosclerotic lipid profile and disturbed redox state. While the results support lipectomy as an effective treatment for obesity, lipectomy induces unfavourable changes in health. ABSTRACT The number of obese older adults is on the rise, but data about proper treatment of obesity in the elderly is controversial. The present study was designed to investigate the effectiveness and consequences of partial subcutaneous lipectomy, as a rapid medical intervention against increased accumulation of body fat, in adult obese rats. The study was conducted on adult (9-12 months) female rats, in which obesity was induced by bilateral surgical ovariectomy. They were randomized into two main groups: short term (5 weeks) and long term (10 weeks). Both groups were subdivided into control, ovariectomized (OVX) and ovariectomized lipectomized groups. Body weight (BW) was measured and body mass index (BMI) calculated. Fasting blood glucose, lipid profile and plasma levels of total proteins, albumin, liver enzymes, malondialdehyde (MDA), leptin and adiponectin were determined. The content of both blood and hepatic tissue of reduced glutathione was estimated. In addition, histological study of the liver, aorta and peri-renal fat was performed. Compared to controls, OVX rats showed significant increase in BW, BMI and plasma levels of liver enzymes, MDA and leptin. Histological study revealed vacuolated ballooned hepatocytes and enlarged irregular visceral adipocytes with atherosclerotic changes in the wall of aorta. Following subcutaneous lipectomy, rats exhibited significant fasting hyperglycaemia, dyslipidaemia, lowered plasma albumin and disturbed redox state with aggravation of the histological changes. The findings indicate that although subcutaneous lipectomy appears to be effective in combating obesity in older females, it has unfavourable effects on both metabolic and hepatic functions.
Collapse
Affiliation(s)
| | - Nehal M Bahgat
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Enas A Abdel-Hady
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Mona K Shawky
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Fatma A Mohamed
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
4
|
Zárate S, Stevnsner T, Gredilla R. Role of Estrogen and Other Sex Hormones in Brain Aging. Neuroprotection and DNA Repair. Front Aging Neurosci 2018. [PMID: 29311911 DOI: 10.3389/fnagi.2017.00430/xml/nlm] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Aging is an inevitable biological process characterized by a progressive decline in physiological function and increased susceptibility to disease. The detrimental effects of aging are observed in all tissues, the brain being the most important one due to its main role in the homeostasis of the organism. As our knowledge about the underlying mechanisms of brain aging increases, potential approaches to preserve brain function rise significantly. Accumulating evidence suggests that loss of genomic maintenance may contribute to aging, especially in the central nervous system (CNS) owing to its low DNA repair capacity. Sex hormones, particularly estrogens, possess potent antioxidant properties and play important roles in maintaining normal reproductive and non-reproductive functions. They exert neuroprotective actions and their loss during aging and natural or surgical menopause is associated with mitochondrial dysfunction, neuroinflammation, synaptic decline, cognitive impairment and increased risk of age-related disorders. Moreover, loss of sex hormones has been suggested to promote an accelerated aging phenotype eventually leading to the development of brain hypometabolism, a feature often observed in menopausal women and prodromal Alzheimer's disease (AD). Although data on the relation between sex hormones and DNA repair mechanisms in the brain is still limited, various investigations have linked sex hormone levels with different DNA repair enzymes. Here, we review estrogen anti-aging and neuroprotective mechanisms, which are currently an area of intense study, together with the effect they may have on the DNA repair capacity in the brain.
Collapse
Affiliation(s)
- Sandra Zárate
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tinna Stevnsner
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Ricardo Gredilla
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
5
|
Zárate S, Stevnsner T, Gredilla R. Role of Estrogen and Other Sex Hormones in Brain Aging. Neuroprotection and DNA Repair. Front Aging Neurosci 2017; 9:430. [PMID: 29311911 PMCID: PMC5743731 DOI: 10.3389/fnagi.2017.00430] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
Aging is an inevitable biological process characterized by a progressive decline in physiological function and increased susceptibility to disease. The detrimental effects of aging are observed in all tissues, the brain being the most important one due to its main role in the homeostasis of the organism. As our knowledge about the underlying mechanisms of brain aging increases, potential approaches to preserve brain function rise significantly. Accumulating evidence suggests that loss of genomic maintenance may contribute to aging, especially in the central nervous system (CNS) owing to its low DNA repair capacity. Sex hormones, particularly estrogens, possess potent antioxidant properties and play important roles in maintaining normal reproductive and non-reproductive functions. They exert neuroprotective actions and their loss during aging and natural or surgical menopause is associated with mitochondrial dysfunction, neuroinflammation, synaptic decline, cognitive impairment and increased risk of age-related disorders. Moreover, loss of sex hormones has been suggested to promote an accelerated aging phenotype eventually leading to the development of brain hypometabolism, a feature often observed in menopausal women and prodromal Alzheimer's disease (AD). Although data on the relation between sex hormones and DNA repair mechanisms in the brain is still limited, various investigations have linked sex hormone levels with different DNA repair enzymes. Here, we review estrogen anti-aging and neuroprotective mechanisms, which are currently an area of intense study, together with the effect they may have on the DNA repair capacity in the brain.
Collapse
Affiliation(s)
- Sandra Zárate
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tinna Stevnsner
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Ricardo Gredilla
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
6
|
Xie M, Doetsch PW, Deng X. Bcl2 inhibition of mitochondrial DNA repair. BMC Cancer 2015; 15:586. [PMID: 26268226 PMCID: PMC4535531 DOI: 10.1186/s12885-015-1594-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 08/06/2015] [Indexed: 01/11/2023] Open
Abstract
Background Accumulation of mitochondrial DNA (mtDNA) damage could enhance the frequency of mitochondrial mutations and promote a variety of mitochondria-related diseases, including cancer. However, the mechanism(s) involved are not fully understood. Methods Quantitative extended length PCR was used to compare mtDNA and nDNA damage in human lung H1299 cells expressing WT Bcl2 or vector-only control. mtAPE1 endonuclease activity was analyzed by AP oligonucleotide assay. mtDNA mutation was measured by single molecule PCR. Subcellular localization of Bcl2 and APE1 was analyzed by subcellular fractionation. Results Bcl2, an anti-apoptotic molecule and oncoprotein, effectively inhibits the endonuclease activity of mitochondrial APE1 (mtAPE1), leading to significant retardation of mtDNA repair and enhanced frequency of mtDNA mutations following exposure of cells to hydrogen peroxide (H2O2) or nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, a carcinogen in cigarette smoke). Inversely, depletion of endogenous Bcl2 by RNA interference increases mtAPE1 endonuclease activity leading to accelerated mtDNA repair and decreased mtDNA mutation. Higher levels of mtAPE1 were observed in human lung cancer cells than in normal human bronchial epithelial cells (i.e. BEAS-2B). Bcl2 partially co-localizes with APE1 in the mitochondria of human lung cancer cells. Bcl2 directly interacts with mtAPE1 via its BH domains. Removal of any of the BH domains from Bcl2 abolishes Bcl2’s capacity to interact with mtAPE1 as well as its inhibitory effects on mtAPE1 activity and mtDNA repair. Conclusions Based our findings, we propose that Bcl2 suppression of mtDNA repair occurs through direct interaction with mtAPE1 and inhibition of its endonuclease activity in mitochondria, which may contribute to enhanced mtDNA mutations and carcinogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1594-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maohua Xie
- Division of Cancer Biology, Departments of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA.
| | - Paul W Doetsch
- Division of Cancer Biology, Departments of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA. .,Biochemistry, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA.
| | - Xingming Deng
- Division of Cancer Biology, Departments of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
7
|
Jabir NR, Firoz CK, Baeesa SS, Ashraf GM, Akhtar S, Kamal W, Kamal MA, Tabrez S. Synopsis on the linkage of Alzheimer's and Parkinson's disease with chronic diseases. CNS Neurosci Ther 2014; 21:1-7. [PMID: 25399848 DOI: 10.1111/cns.12344] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 12/12/2022] Open
Abstract
Neurodegeneration is the progressive loss of neuronal structure and function, which ultimately leads to neurological disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis, and Huntington's disease. Even after the recent significant advances in neurobiology, the above-mentioned disorders continue to haunt the global population. Several studies have suggested the role of specific environmental and genetic risk factors associated with these disorders. However, the exact mechanism associated with the progression of these disorders still needs to be elucidated. In the recent years, sophisticated research has revealed interesting association of prominent neurodegenerative disorders such as AD and PD with chronic diseases such as cancer, diabetes, and cardiovascular diseases. Several common molecular mechanisms such as generation of free radicals, oxidative DNA damage, aberrations in mitochondrial DNA, and dysregulation of apoptosis have been highlighted as possible points of connection. The present review summarizes the possible mechanism of coexistence of AD and PD with other chronic diseases.
Collapse
Affiliation(s)
- Nasimudeen R Jabir
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Lizcano F, Guzmán G. Estrogen Deficiency and the Origin of Obesity during Menopause. BIOMED RESEARCH INTERNATIONAL 2014; 2014:757461. [PMID: 24734243 PMCID: PMC3964739 DOI: 10.1155/2014/757461] [Citation(s) in RCA: 306] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 12/27/2022]
Abstract
Sex hormones strongly influence body fat distribution and adipocyte differentiation. Estrogens and testosterone differentially affect adipocyte physiology, but the importance of estrogens in the development of metabolic diseases during menopause is disputed. Estrogens and estrogen receptors regulate various aspects of glucose and lipid metabolism. Disturbances of this metabolic signal lead to the development of metabolic syndrome and a higher cardiovascular risk in women. The absence of estrogens is a clue factor in the onset of cardiovascular disease during the menopausal period, which is characterized by lipid profile variations and predominant abdominal fat accumulation. However, influence of the absence of these hormones and its relationship to higher obesity in women during menopause are not clear. This systematic review discusses of the role of estrogens and estrogen receptors in adipocyte differentiation, and its control by the central nervous systemn and the possible role of estrogen-like compounds and endocrine disruptors chemicals are discussed. Finally, the interaction between the decrease in estrogen secretion and the prevalence of obesity in menopausal women is examined. We will consider if the absence of estrogens have a significant effect of obesity in menopausal women.
Collapse
Affiliation(s)
- Fernando Lizcano
- Biomedical Research Center, Universidad de La Sabana (CIBUS), km 7, Autopista Norte de Bogota, Chia, Colombia ; Fundacion Cardio-Infantil Instituto de Cardiologia, Bogota, Colombia
| | - Guillermo Guzmán
- Biomedical Research Center, Universidad de La Sabana (CIBUS), km 7, Autopista Norte de Bogota, Chia, Colombia
| |
Collapse
|
9
|
Takaki A, Kawai D, Yamamoto K. Multiple hits, including oxidative stress, as pathogenesis and treatment target in non-alcoholic steatohepatitis (NASH). Int J Mol Sci 2013; 14:20704-28. [PMID: 24132155 PMCID: PMC3821639 DOI: 10.3390/ijms141020704] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 09/18/2013] [Accepted: 09/29/2013] [Indexed: 12/12/2022] Open
Abstract
Multiple parallel hits, including genetic differences, insulin resistance and intestinal microbiota, account for the progression of non-alcoholic steatohepatitis (NASH). Multiple hits induce adipokine secretion, endoplasmic reticulum (ER) and oxidative stress at the cellular level that subsequently induce hepatic steatosis, inflammation and fibrosis, among which oxidative stress is considered a key contributor to progression from simple fatty liver to NASH. Although several clinical trials have shown that anti-oxidative therapy can effectively control hepatitis activities in the short term, the long-term effect remains obscure. Several trials of long-term anti-oxidant protocols aimed at treating cerebrovascular diseases or cancer development have failed to produce a benefit. This might be explained by the non-selective anti-oxidative properties of these drugs. Molecular hydrogen is an effective antioxidant that reduces only cytotoxic reactive oxygen species (ROS) and several diseases associated with oxidative stress are sensitive to hydrogen. The progress of NASH to hepatocellular carcinoma can be controlled using hydrogen-rich water. Thus, targeting mitochondrial oxidative stress might be a good candidate for NASH treatment. Long term clinical intervention is needed to control this complex lifestyle-related disease.
Collapse
Affiliation(s)
- Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama City, Okayama 700-8558, Japan.
| | | | | |
Collapse
|