1
|
da Cruz IBM, de Afonso Bonotto NC, Turra BO, Teixeira CF, Azzolin VF, Ribeiro EAM, Piccoli JDCE, Barbisan F. Rotenone-exposure as cytofunctional aging model of human dermal fibroblast prior replicative senescence. Toxicol In Vitro 2023:105637. [PMID: 37394047 DOI: 10.1016/j.tiv.2023.105637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Rotenone (Ro), causes superoxide imbalance by inhibiting complex I of the mitochondrial electron transport chain, being able to serve as a model for functional skin aging by inducing cytofunctional changes in dermal fibroblasts prior to proliferative senescence. To test this hypothesis, we conducted an initial protocol to select a concentration of Ro (0.5, 1, 1.5, 2, 2.5, and 3 μM) that would induce the highest levels of the aging marker beta-galactosidase (β-gal) in human dermal HFF-1 fibroblasts after 72 h of culture, as well as a moderate increase in apoptosis and partial G1 arrestment. We evaluated whether the selected concentration (1 μM) differentially modulated oxidative and cytofunctional markers of fibroblasts. Ro 1.0 μM increased β-gal levels and apoptosis frequency, decreased the frequency of S/G2 cells, induced higher levels of oxidative markers, and presented a genotoxic effect. Fibroblasts exposed to Ro showed lower mitochondrial activity, extracellular collagen deposition, and fewer fibroblast cytoplasmic connections than controls. Ro triggered overexpression of the gene associated with aging (MMP-1), downregulation genes of collagen production (COL1A, FGF-2), and cellular growth/regeneration (FGF-7). The 1 μM concentration of Ro could serve as an experimental model for functional aging fibroblasts prior to replicative senescence. It could be used to identify causal aging mechanisms and strategies to delay skin aging events.
Collapse
Affiliation(s)
- Ivana Beatrice Mânica da Cruz
- Postgraduate Program of Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil; Postgraduate Program of em Gerontology, Federal University of Santa Maria, Santa Maria, RS, Brazil; Santa Maria, RS, Brazil d Open University of the Third Age, State University of Amazonas, Manaus, AM, Brazil
| | - Nathália Cardoso de Afonso Bonotto
- Postgraduate Program of Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil; Postgraduate Program of em Gerontology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Bárbara Osmarin Turra
- Postgraduate Program of Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil; Santa Maria, RS, Brazil d Open University of the Third Age, State University of Amazonas, Manaus, AM, Brazil
| | - Cibele Ferreira Teixeira
- Postgraduate Program of Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Verônica Farina Azzolin
- Postgraduate Program of em Gerontology, Federal University of Santa Maria, Santa Maria, RS, Brazil; Santa Maria, RS, Brazil d Open University of the Third Age, State University of Amazonas, Manaus, AM, Brazil
| | - Ednea Aguiar Maia Ribeiro
- Santa Maria, RS, Brazil d Open University of the Third Age, State University of Amazonas, Manaus, AM, Brazil
| | | | - Fernanda Barbisan
- Postgraduate Program of Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil; Postgraduate Program of em Gerontology, Federal University of Santa Maria, Santa Maria, RS, Brazil; Santa Maria, RS, Brazil d Open University of the Third Age, State University of Amazonas, Manaus, AM, Brazil.
| |
Collapse
|
2
|
Gharbi S, Khateri S, Soroush MR, Shamsara M, Naeli P, Najafi A, Korsching E, Mowla SJ. MicroRNA expression in serum samples of sulfur mustard veterans as a diagnostic gateway to improve care. PLoS One 2018; 13:e0194530. [PMID: 29566027 PMCID: PMC5864010 DOI: 10.1371/journal.pone.0194530] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 03/05/2018] [Indexed: 01/01/2023] Open
Abstract
Sulfur mustard is a vesicant chemical warfare agent, which has been used during Iraq-Iran-war. Many veterans and civilians still suffer from long-term complications of sulfur mustard exposure, especially in their lung. Although the lung lesions of these patients are similar to Chronic Obstructive Pulmonary Disease (COPD), there are some differences due to different etiology and clinical care. Less is known on the molecular mechanism of sulfur mustard patients and specific treatment options. microRNAs are master regulators of many biological pathways and proofed to be stable surrogate markers in body fluids. Based on that microRNA expression for serum samples of sulfur mustard patients were examined, to establish specific microRNA patterns as a basis for diagnostic use and insight into affected molecular pathways. Patients were categorized based on their long-term complications into three groups and microRNA serum levels were measured. The differentially regulated microRNAs and their corresponding gene targets were identified. Cell cycle arrest, ageing and TGF-beta signaling pathways showed up to be the most deregulated pathways. The candidate microRNA miR-143-3p could be validated on all individual patients. In a ROC analysis miR-143-3p turned out to be a suitable diagnostic biomarker in the mild and severe categories of patients. Further microRNAs which might own a link to the biology of the sulfur mustard patients are miR-365a-3p, miR-200a-3p, miR-663a. miR-148a-3p, which showed up only in a validation study, might be linked to the airway complications of the sulfur mustard patients. All the other candidate microRNAs do not directly link to COPD phenotype or lung complications. In summary the microRNA screening study characterizes several molecular differences in-between the clinical categories of the sulfur mustard exposure groups and established some useful microRNA biomarkers. qPCR raw data is available via the Gene Expression Omnibus https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE110797.
Collapse
Affiliation(s)
- Sedigheh Gharbi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Shahriar Khateri
- Janbazan Medical and Engineering Research Center (JMERC), Tehran, Iran
| | | | - Mehdi Shamsara
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Parisa Naeli
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Najafi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Eberhard Korsching
- Institute of Bioinformatics, University Hospital of Münster, University of Münster, Münster, Germany
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
Carden T, Singh B, Mooga V, Bajpai P, Singh KK. Epigenetic modification of miR-663 controls mitochondria-to-nucleus retrograde signaling and tumor progression. J Biol Chem 2017; 292:20694-20706. [PMID: 29066618 DOI: 10.1074/jbc.m117.797001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/03/2017] [Indexed: 01/20/2023] Open
Abstract
The normal cellular function requires communication between mitochondria and the nucleus, termed mitochondria-to-nucleus retrograde signaling. Disruption of this mechanism has been implicated in the development of cancers. Many proteins are known modulators of retrograde signaling, but whether microRNAs (miRNAs) are also involved is unknown. We conducted an miRNA microarray analysis using RNA from a parental cell line, a Rho0 line lacking mitochondrial DNA (mtDNA) and a Rho0 line with restored mtDNA. We found that miR-663 was down-regulated in the mtDNA-depleted Rho0 line. mtDNA restoration reversed this miRNA to parental level, suggesting that miR-663 may be epigenetically regulated by retrograde signaling. By using methylation-specific PCR and bisulfite sequencing we demonstrate that miR-663 promoter is epigenetically regulated not only by genetic but also by pharmacological disruption of oxidative phosphorylation (OXPHOS). Restoration of OXPHOS Complex I inhibitor-induced miR-663 expression by N-acetylcysteine suggested that reactive oxygen species (ROS) play a key role in epigenetic regulation of miR-663. We determined that miR-663 regulates the expression of nuclear-encoded respiratory chain subunits involved in Complexes I, II, III, and IV. miR-663 also controlled the expression of the Complexes I (NDUFAF1), II (SDHAF2), III (UQCC2), and IV (SCO1) assembly factors and was required for stability of respiratory supercomplexes. Furthermore, using luciferase assays, we found that miR-663 directly regulates UQCC2. The anti-miR-663 reduced OXPHOS complex activity and increased in vitro cellular proliferation and promoted tumor development in vivo in mice. We also found that increased miR-663 expression in breast tumors consistently correlates with increased patient survival. We provide the first evidence for miRNA controlling retrograde signaling, demonstrating its epigenetic regulation and its role in breast tumorigenesis.
Collapse
Affiliation(s)
| | | | | | | | - Keshav K Singh
- From the Departments of Genetics, .,Pathology, and.,Environmental Health Sciences.,Center for Free Radical Biology.,Center for Aging, and.,UAB Comprehensive Cancer Center, University of Alabama at Birmingham and.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama 35294
| |
Collapse
|
4
|
Waaijer MEC, Croco E, Westendorp RGJ, Slagboom PE, Sedivy JM, Lorenzini A, Maier AB. DNA damage markers in dermal fibroblasts in vitro reflect chronological donor age. Aging (Albany NY) 2016; 8:147-57. [PMID: 26830451 PMCID: PMC4761719 DOI: 10.18632/aging.100890] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aging process is accompanied by an accumulation of cellular damage, which compromises the viability and function of cells and tissues. We aim to further explore the association between in vitro DNA damage markers and the chronological age of the donor, as well as long-lived family membership and presence of cardiovascular diseases. Therefore, numbers of 53BP1 foci, telomere-associated foci (TAF) and micronuclei were measured in cultured dermal fibroblasts obtained from three age groups of donors (mean age 22, 63 and 90 years). Fibroblasts were cultured without a stressor and with 0.6 μM rotenone for 3 days. We found that 53BP1 foci and TAF were more frequently present in fibroblasts of old donors compared to middle-aged and young donors. No association between micronuclei and donor age was found. Within the fibroblasts of the middle-aged donors we did not find associations between DNA damage markers and long-lived family membership or cardiovascular disease. Results were comparable when fibroblasts were stressed in vitro with rotenone. In conclusion, we found that DNA damage foci of cultured fibroblasts are significantly associated with the chronological age, but not biological age, of the donor.
Collapse
Affiliation(s)
- Mariëtte E C Waaijer
- Department of Gerontology and Geriatrics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Eleonora Croco
- Department for Life Quality Studies, University of Bologna, 40126 Bologna, Italy
| | - Rudi G J Westendorp
- Department of Public Health and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, 1123 Copenhagen, Denmark
| | - P Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.,Netherlands Consortium for Healthy Aging, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - John M Sedivy
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA
| | - Antonello Lorenzini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Andrea B Maier
- Department of Internal Medicine, Section of Gerontology and Geriatrics, VU University Medical Center, 1007 MB Amsterdam, The Netherlands.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville VIC 3050, Australia
| |
Collapse
|
5
|
Identification of MicroRNAs Involved in Growth Arrest and Apoptosis in Hydrogen Peroxide-Treated Human Hepatocellular Carcinoma Cell Line HepG2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7530853. [PMID: 27597883 PMCID: PMC5002491 DOI: 10.1155/2016/7530853] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/01/2016] [Accepted: 07/13/2016] [Indexed: 01/06/2023]
Abstract
Although both oxidative stress and microRNAs (miRNAs) play vital roles in physiological and pathological processes, little is known about the interactions between them. In this study, we first described the regulation of H2O2 in cell viability, proliferation, cycle, and apoptosis of human hepatocellular carcinoma cell line HepG2. Then, miRNAs expression was profiled after H2O2 treatment. The results showed that high concentration of H2O2 (600 μM) could decrease cell viability, inhibit cell proliferation, induce cell cycle arrest, and finally promote cell apoptosis. Conversely, no significant effects could be found under treatment with low concentration (30 μM). miRNAs array analysis identified 131 differentially expressed miRNAs (125 were upregulated and 6 were downregulated) and predicted 13504 putative target genes of the deregulated miRNAs. Gene ontology (GO) analysis revealed that the putative target genes were associated with H2O2-induced cell growth arrest and apoptosis. The subsequent bioinformatics analysis indicated that H2O2-response pathways, including MAPK signaling pathway, apoptosis, and pathways in cancer and cell cycle, were significantly affected. Overall, these results provided comprehensive information on the biological function of H2O2 treatment in HepG2 cells. The identification of miRNAs and their putative targets may offer new diagnostic and therapeutic strategies for liver cancer.
Collapse
|