1
|
Kumar R, Thakur A, Kumar S, Hajam YA. Royal jelly a promising therapeutic intervention and functional food supplement: A systematic review. Heliyon 2024; 10:e37138. [PMID: 39296128 PMCID: PMC11408027 DOI: 10.1016/j.heliyon.2024.e37138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
Royal jelly (RJ), a secretion produced by honeybees, has garnered significant interest for its potential as a therapeutic intervention and functional food supplement. This systematic review aims to synthesize current research on the health benefits, bioactive components, and mechanisms of action of RJ. Comprehensive literature searches were conducted across multiple databases, including PubMed, Scopus, and Web of Science, focusing on studies published from 2000 to 2024 (April). Findings indicate that RJ exhibits a wide range of pharmacological activities, including anti-inflammatory, antioxidant, antimicrobial, and anti-aging effects. Beneficial biological properties of RJ might be due to the presence of flavonoids proteins, peptides, fatty acids. Both preclinical and clinical studies have reported that RJ improves the immune function such as wound healing, and also decreases the severity of chronic diseases including diabetes and cardiovascular disorders. The molecular mechanisms underlying these effects involve modulation of signalling pathways such as NF-κB, MAPK, and AMPK. Despite promising results, the review identifies several gaps in the current knowledge, including the need for standardized dosing regimens and long-term safety assessments. Furthermore, variations in RJ composition due to geographic and botanical factors necessitate more rigorous quality control measures. This review underscores the potential of RJ as a multifunctional therapeutic agent and highlights the necessity for further well designed studies to fully elucidate its health benefits and optimize its use as a functional food supplement.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department Biosciences, Himachal University, Shimla, Himachal Pradesh-171005, India
| | - Ankita Thakur
- Department Biosciences, Himachal University, Shimla, Himachal Pradesh-171005, India
| | - Suresh Kumar
- Department Biosciences, Himachal University, Shimla, Himachal Pradesh-171005, India
| | - Younis Ahmad Hajam
- Department of Life Sciences and Allied Health Sciences, Sant Baba Bhag Singh University, Jalandhar, Punjab -144030, India
| |
Collapse
|
2
|
Prvulovic M, Pavlovic S, Mitic SB, Simeunovic V, Vukojevic A, Todorovic S, Mladenovic A. Mitigating the effects of time in the heart and liver: the variable effects of short- and long-term caloric restriction. Mech Ageing Dev 2024:111992. [PMID: 39270803 DOI: 10.1016/j.mad.2024.111992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Caloric restriction (CR) is known for its anti-aging benefits, partly due to reduced oxidative stress and enhanced antioxidant defense. However, CR outcomes vary based on its intensity, timing, and duration. This study explored CR's effects on antioxidant activity in the heart and liver of male Wistar rats during aging. We investigated two CR paradigms: long-term CR (LTCR), started early in life, and short-term CR (STCR), initiated in middle or old age for 3 months. Contrary to previous findings of short-term CR deleterious effects of on the nervous system, our results revealed increased levels of key antioxidants after STCR. More specifically, we found an increase in GSH-Px and GSH under STCR that was particularly pronounced in the liver, while an increase in CAT and GR activities was observed in the heart of the STCR groups. Catalase was characterized as an enzyme particularly responsive to CR, as its activity was also increased in both the liver and heart after long-term caloric restriction. Our results highlight a significant tissue-specific response to CR and contribute to our understanding of the dynamic effects of CR, which in turn has implications for refining its therapeutic potential in combating age-related decline.
Collapse
Affiliation(s)
- Milica Prvulovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of the Republic of Serbia, University of Belgrade, Bul. D. Stefana 142, 11108 Belgrade, Serbia
| | - Sladjan Pavlovic
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic", National Institute of the Republic of Serbia, University of Belgrade, Bul. D. Stefana 142, 11108 Belgrade, Serbia
| | - Slavica Borkovic Mitic
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic", National Institute of the Republic of Serbia, University of Belgrade, Bul. D. Stefana 142, 11108 Belgrade, Serbia
| | - Valentina Simeunovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of the Republic of Serbia, University of Belgrade, Bul. D. Stefana 142, 11108 Belgrade, Serbia
| | - Andjela Vukojevic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of the Republic of Serbia, University of Belgrade, Bul. D. Stefana 142, 11108 Belgrade, Serbia
| | - Smilja Todorovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of the Republic of Serbia, University of Belgrade, Bul. D. Stefana 142, 11108 Belgrade, Serbia
| | - Aleksandra Mladenovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of the Republic of Serbia, University of Belgrade, Bul. D. Stefana 142, 11108 Belgrade, Serbia.
| |
Collapse
|
3
|
Cao Y, Xu W, Liu Q. Alterations of the blood-brain barrier during aging. J Cereb Blood Flow Metab 2024; 44:881-895. [PMID: 38513138 PMCID: PMC11318406 DOI: 10.1177/0271678x241240843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
The blood-brain barrier (BBB) is a complex and dynamic interface that regulates the exchange of molecules and cells between the blood and the central nervous system. It undergoes structural and functional changes during aging, which may compromise its integrity and contribute to the pathogenesis of neurodegenerative diseases. In recent years, advances in microscopy and high-throughput bioinformatics have allowed a more in-depth investigation of the aging mechanisms of BBB. This review summarizes age-related alterations of the BBB structure and function from six perspectives: endothelial cells, astrocytes, pericytes, basement membrane, microglia and perivascular macrophages, and fibroblasts, ranging from the molecular level to the human multi-system level. These basic components are essential for the proper functioning of the BBB. Recent imaging methods of BBB were also reviewed. Elucidation of age-associated BBB changes may offer insights into BBB homeostasis and may provide effective therapeutic strategies to protect it during aging.
Collapse
Affiliation(s)
- Yufan Cao
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weihai Xu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Todorovic S, Simeunovic V, Prvulovic M, Dakic T, Jevdjovic T, Sokanovic S, Kanazir S, Mladenovic A. Dietary restriction alters insulin signaling pathway in the brain. Biofactors 2024; 50:450-466. [PMID: 37975613 DOI: 10.1002/biof.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/07/2023] [Indexed: 11/19/2023]
Abstract
Insulin is known to be a key hormone in the regulation of peripheral glucose homeostasis, but beyond that, its effects on the brain are now undisputed. Impairments in insulin signaling in the brain, including changes in insulin levels, are thought to contribute significantly to declines in cognitive performance, especially during aging. As one of the most widely studied experimental interventions, dietary restriction (DR) is considered to delay the neurodegenerative processes associated with aging. Recently, however, data began to suggest that the onset and duration of a restrictive diet play a critical role in the putative beneficial outcome. Because the effects of DR on insulin signaling in the brain have been poorly studied, we decided to examine the effects of DR that differed in onset and duration: long-term DR (LTDR), medium-term DR (MTDR), and short-term DR (STDR) on the expression of proteins involved in insulin signaling in the hippocampus of 18- and 24-month-old male Wistar rats. We found that DR-induced changes in insulin levels in the brain may be independent of what happens in the periphery after restricted feeding. Significantly changed insulin content in the hippocampus, together with altered insulin signaling were found under the influence of DR, but the outcome was highly dependent on the onset and duration of DR.
Collapse
Affiliation(s)
- Smilja Todorovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Valentina Simeunovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milica Prvulovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tamara Dakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Tanja Jevdjovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Srdjan Sokanovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Selma Kanazir
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Mladenovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
5
|
Kim CK, Sachdev PS, Braidy N. Recent Neurotherapeutic Strategies to Promote Healthy Brain Aging: Are we there yet? Aging Dis 2022; 13:175-214. [PMID: 35111369 PMCID: PMC8782556 DOI: 10.14336/ad.2021.0705] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
Owing to the global exponential increase in population ageing, there is an urgent unmet need to develop reliable strategies to slow down and delay the ageing process. Age-related neurodegenerative diseases are among the main causes of morbidity and mortality in our contemporary society and represent a major socio-economic burden. There are several controversial factors that are thought to play a causal role in brain ageing which are continuously being examined in experimental models. Among them are oxidative stress and brain inflammation which are empirical to brain ageing. Although some candidate drugs have been developed which reduce the ageing phenotype, their clinical translation is limited. There are several strategies currently in development to improve brain ageing. These include strategies such as caloric restriction, ketogenic diet, promotion of cellular nicotinamide adenine dinucleotide (NAD+) levels, removal of senescent cells, 'young blood' transfusions, enhancement of adult neurogenesis, stem cell therapy, vascular risk reduction, and non-pharmacological lifestyle strategies. Several studies have shown that these strategies can not only improve brain ageing by attenuating age-related neurodegenerative disease mechanisms, but also maintain cognitive function in a variety of pre-clinical experimental murine models. However, clinical evidence is limited and many of these strategies are awaiting findings from large-scale clinical trials which are nascent in the current literature. Further studies are needed to determine their long-term efficacy and lack of adverse effects in various tissues and organs to gain a greater understanding of their potential beneficial effects on brain ageing and health span in humans.
Collapse
Affiliation(s)
- Chul-Kyu Kim
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Perminder S Sachdev
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| |
Collapse
|
6
|
Ali AM, Kunugi H. Royal Jelly as an Intelligent Anti-Aging Agent-A Focus on Cognitive Aging and Alzheimer's Disease: A Review. Antioxidants (Basel) 2020; 9:E937. [PMID: 33003559 PMCID: PMC7601550 DOI: 10.3390/antiox9100937] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 02/08/2023] Open
Abstract
The astronomical increase of the world's aged population is associated with the increased prevalence of neurodegenerative diseases, heightened disability, and extremely high costs of care. Alzheimer's Disease (AD) is a widespread, age-related, multifactorial neurodegenerative disease that has enormous social and financial drawbacks worldwide. The unsatisfactory outcomes of available AD pharmacotherapy necessitate the search for alternative natural resources that can target various the underlying mechanisms of AD pathology and reduce disease occurrence and/or progression. Royal jelly (RJ) is the main food of bee queens; it contributes to their fertility, long lifespan, and memory performance. It represents a potent nutraceutical with various pharmacological properties, and has been used in a number of preclinical studies to target AD and age-related cognitive deterioration. To understand the mechanisms through which RJ affects cognitive performance both in natural aging and AD, we reviewed the literature, elaborating on the metabolic, molecular, and cellular mechanisms that mediate its anti-AD effects. Preclinical findings revealed that RJ acts as a multidomain cognitive enhancer that can restore cognitive performance in aged and AD models. It promotes brain cell survival and function by targeting multiple adversities in the neuronal microenvironment such as inflammation, oxidative stress, mitochondrial alterations, impaired proteostasis, amyloid-β toxicity, Ca excitotoxicity, and bioenergetic challenges. Human trials using RJ in AD are limited in quantity and quality. Here, the limitations of RJ-based treatment strategies are discussed, and directions for future studies examining the effect of RJ in cognitively impaired subjects are noted.
Collapse
Affiliation(s)
- Amira Mohammed Ali
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-0031, Japan;
- Department of Psychiatric Nursing and Mental Health, Faculty of Nursing, Alexandria University, Alexandria 21527, Egypt
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-0031, Japan;
- Department of Psychiatry, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| |
Collapse
|
7
|
Spagnuolo MS, Pallottini V, Mazzoli A, Iannotta L, Tonini C, Morone B, Ståhlman M, Crescenzo R, Strazzullo M, Iossa S, Cigliano L. A Short‐Term Western Diet Impairs Cholesterol Homeostasis and Key Players of Beta Amyloid Metabolism in Brain of Middle Aged Rats. Mol Nutr Food Res 2020; 64:e2000541. [DOI: 10.1002/mnfr.202000541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Indexed: 12/28/2022]
Affiliation(s)
| | - Valentina Pallottini
- Department of ScienceBiomedical and Technology Science SectionUniversity Roma Tre Rome 00146 Italy
| | - Arianna Mazzoli
- Department of BiologyUniversity of Naples Federico II Naples 80126 Italy
| | - Lucia Iannotta
- Department of BiologyUniversity of Naples Federico II Naples 80126 Italy
| | - Claudia Tonini
- Department of ScienceBiomedical and Technology Science SectionUniversity Roma Tre Rome 00146 Italy
| | - Barbara Morone
- Institute of Genetics and Biophysics “A. Buzzati‐Traverso”National Research Council Naples 80131 Italy
| | - Marcus Ståhlman
- Wallenberg LaboratoryDepartment of Molecular and Clinical MedicineSahlgrenska AcademyUniversity of Gothenburg Gothenburg 413 45 Sweden
| | | | - Maria Strazzullo
- Institute of Genetics and Biophysics “A. Buzzati‐Traverso”National Research Council Naples 80131 Italy
| | - Susanna Iossa
- Department of BiologyUniversity of Naples Federico II Naples 80126 Italy
| | - Luisa Cigliano
- Department of BiologyUniversity of Naples Federico II Naples 80126 Italy
| |
Collapse
|
8
|
Lazic D, Tesic V, Jovanovic M, Brkic M, Milanovic D, Zlokovic BV, Kanazir S, Perovic M. Every-other-day feeding exacerbates inflammation and neuronal deficits in 5XFAD mouse model of Alzheimer's disease. Neurobiol Dis 2020; 136:104745. [PMID: 31931140 DOI: 10.1016/j.nbd.2020.104745] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 11/22/2019] [Accepted: 01/09/2020] [Indexed: 02/04/2023] Open
Abstract
Food restriction has been widely associated with beneficial effects on brain aging and age-related neurodegenerative diseases such as Alzheimer's disease. However, previous studies on the effects of food restriction on aging- or pathology-related cognitive decline are controversial, emphasizing the importance of the type, onset and duration of food restriction. In the present study, we assessed the effects of preventive every-other-day (EOD) feeding regimen on neurodegenerative phenotype in 5XFAD transgenic mice, a commonly used mouse model of Alzheimer's disease. EOD feeding regimen was introduced to transgenic female mice at the age of 2 months and the effects on amyloid-β (Aβ) accumulation, gliosis, synaptic plasticity, and blood-brain barrier breakdown were analyzed in cortical tissue of 6-month-old animals. Surprisingly, significant increase of inflammation in the cortex of 5XFAD fed EOD mice was observed, reflected by the expression of microglial and astrocytic markers. This increase in reactivity and/or proliferation of glial cells was accompanied by an increase in proinflammatory cytokine TNF-α, p38 MAPK and EAAT2, and a decrease in GAD67. NMDA receptor subunit 2B, related to glutamate excitotoxicity, was increased in the cortex of 5XFAD-EOD mice indicating additional alterations in glutamatergic signaling. Furthermore, 4 months of EOD feeding regimen had led to synaptic plasticity proteins reduction and neuronal injury in 5XFAD mice. However, EOD feeding regimen did not affect Aβ load and blood-brain barrier permeability in the cortex of 5XFAD mice. Our results demonstrate that EOD feeding regimen exacerbates Alzheimer's disease-like neurodegenerative and neuroinflammatory changes irrespective of Aβ pathology in 5XFAD mice, suggesting that caution should be paid when using food restrictions in the prodromal phase of this neurodegenerative disease.
Collapse
Affiliation(s)
- Divna Lazic
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11000 Belgrade, Serbia; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo St, 90033 Los Angeles, CA, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, 1501 San Pablo St, 90033 Los Angeles, CA, USA.
| | - Vesna Tesic
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11000 Belgrade, Serbia.
| | - Mirna Jovanovic
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11000 Belgrade, Serbia.
| | - Marjana Brkic
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11000 Belgrade, Serbia.
| | - Desanka Milanovic
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11000 Belgrade, Serbia.
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo St, 90033 Los Angeles, CA, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, 1501 San Pablo St, 90033 Los Angeles, CA, USA.
| | - Selma Kanazir
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11000 Belgrade, Serbia.
| | - Milka Perovic
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11000 Belgrade, Serbia.
| |
Collapse
|