1
|
Adelusi OA, Gbashi S, Adebiyi JA, Makhuvele R, Adebo OA, Aasa AO, Targuma S, Kah G, Njobeh PB. Variability in metabolites produced by Talaromyces pinophilus SPJ22 cultured on different substrates. Fungal Biol Biotechnol 2022; 9:15. [PMID: 36307838 PMCID: PMC9617411 DOI: 10.1186/s40694-022-00145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/07/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Several metabolites released by fungal species are an essential source of biologically active natural substances. Gas chromatography high resolution time-of-flight mass spectrometry (GC-HRTOF-MS) is one of the techniques used in profiling the metabolites produced by microorganisms, including Talaromyces pinophilus. However, there is limited information regarding differential substrates' impacts on this fungal strain's metabolite profiling. This study examined the metabolite profile of T. pinophilus strain SPJ22 cultured on three different media, including solid czapek yeast extract agar (CYA), malt extract agar (MEA) and potato dextrose agar (PDA) using GC-HRTOF-MS. The mycelia including the media were plugged and dissolved in 5 different organic solvents with varying polarities viz.: acetonitrile, dichloromethane, hexane, 80% methanol and water, and extracts analysed on GC-HRTOF-MS. RESULTS The study revealed the presence of different classes of metabolites, such as fatty acids (2.13%), amides (4.26%), alkanes (34.04%), furan (2.13%), ketones (4.26%), alcohols (14.89%), aromatic compounds (6.38%), and other miscellaneous compounds (17.02%). Significant metabolites such as acetic acid, 9-octadecenamide, undecanoic acid methyl ester, hydrazine, hexadecane, nonadecane, eicosane, and other compounds reported in this study have been widely documented to have plant growth promoting, antimicrobial, anti-inflammatory, antioxidant, and biofuel properties. Furthermore, T. pinophilus grown on PDA and MEA produced more than twice as many compounds as that grown on CYA. CONCLUSION Thus, our result showed that the production of essential metabolites from T. pinophilus is substrate dependent, with many of these metabolites known to have beneficial characteristics, and as such, this organism can be utilised as a sustainable and natural source for these useful organic molecules.
Collapse
Affiliation(s)
- Oluwasola Abayomi Adelusi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O.BOX 17011, Gauteng, South Africa
| | - Sefater Gbashi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O.BOX 17011, Gauteng, South Africa
| | - Janet Adeyinka Adebiyi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O.BOX 17011, Gauteng, South Africa
| | - Rhulani Makhuvele
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O.BOX 17011, Gauteng, South Africa
| | - Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O.BOX 17011, Gauteng, South Africa
| | - Adeola Oluwakemi Aasa
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O.BOX 17011, Gauteng, South Africa
| | - Sarem Targuma
- Department of Chemistry, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O.BOX 17011, Gauteng, South Africa
| | - Glory Kah
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O.BOX 17011, Gauteng, South Africa
| | - Patrick Berka Njobeh
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O.BOX 17011, Gauteng, South Africa
| |
Collapse
|
2
|
Lulamba TE, Green E, Serepa-Dlamini MH. Photorhabdus sp. ETL Antimicrobial Properties and Characterization of Its Secondary Metabolites by Gas Chromatography-Mass Spectrometry. Life (Basel) 2021; 11:life11080787. [PMID: 34440531 PMCID: PMC8401408 DOI: 10.3390/life11080787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 01/08/2023] Open
Abstract
Entomopathogenic nematodes (EPNs) are known to be highly pathogenic to insect pests, due to their associated symbiotic bacteria, which produce virulence factors, exo-enzymes and other harmful secondary metabolites to conquer, kill, and degrade their insect hosts. However, these properties are not fully characterized. This study reports on the antimicrobial activities of Photorhabdus sp. strain ETL, symbiotically associated to an insect pathogenic nematode, Heterorhabditis zealandica, against human pathogenic bacteria and toxigenic fungi, as well as the non-targeted profiling of its secondary metabolites (SMs) using gas chromatography coupled to high-resolution time-of-flight mass spectrometry. Fatty acids including 3-eicosene, (E)-; 5-eicosene, (E)-; eicosene; 9-octadecenamide; undecanoic acid with shown antimicrobial activities were detected. This provided more insight on the composition and bioactivities of SMs produced by the Photorhabdus sp.
Collapse
|
3
|
Rossi A, Martins MP, Bitencourt TA, Peres NTA, Rocha CHL, Rocha FMG, Neves-da-Rocha J, Lopes MER, Sanches PR, Bortolossi JC, Martinez-Rossi NM. Reassessing the Use of Undecanoic Acid as a Therapeutic Strategy for Treating Fungal Infections. Mycopathologia 2021; 186:327-340. [PMID: 33835367 DOI: 10.1007/s11046-021-00550-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/21/2021] [Indexed: 12/15/2022]
Abstract
Treating fungal infections is challenging and frequently requires long-term courses of antifungal drugs. Considering the limited number of existing antifungal drugs, it is crucial to evaluate the possibility of repositioning drugs with antifungal properties and to revisit older antifungals for applications in combined therapy, which could widen the range of therapeutic possibilities. Undecanoic acid is a saturated medium-chain fatty acid with known antifungal effects; however, its antifungal properties have not been extensively explored. Recent advances indicate that the toxic effect of undecanoic acid involves modulation of fungal metabolism through its effects on the expression of fungal genes that are critical for virulence. Additionally, undecanoic acid is suitable for chemical modification and might be useful in synergic therapies. This review highlights the use of undecanoic acid in antifungal treatments, reinforcing its known activity against dermatophytes. Specifically, in Trichophyton rubrum, against which the activity of undecanoic acid has been most widely studied, undecanoic acid elicits profound effects on pivotal processes in the cell wall, membrane assembly, lipid metabolism, pathogenesis, and even mRNA processing. Considering the known antifungal activities and associated mechanisms of undecanoic acid, its potential use in combination therapy, and the ability to modify the parent compound structure, undecanoic acid shows promise as a novel therapeutic against fungal infections.
Collapse
Affiliation(s)
- Antonio Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, USP, Ribeirão Preto, SP, 14049-900, Brazil
| | - Maíra P Martins
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, USP, Ribeirão Preto, SP, 14049-900, Brazil
| | - Tamires A Bitencourt
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, USP, Ribeirão Preto, SP, 14049-900, Brazil
| | - Nalu T A Peres
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carlos H L Rocha
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, USP, Ribeirão Preto, SP, 14049-900, Brazil
| | - Flaviane M G Rocha
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, USP, Ribeirão Preto, SP, 14049-900, Brazil
| | - João Neves-da-Rocha
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, USP, Ribeirão Preto, SP, 14049-900, Brazil
| | - Marcos E R Lopes
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, USP, Ribeirão Preto, SP, 14049-900, Brazil
| | - Pablo R Sanches
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, USP, Ribeirão Preto, SP, 14049-900, Brazil
| | - Júlio C Bortolossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, USP, Ribeirão Preto, SP, 14049-900, Brazil
| | - Nilce M Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, USP, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
4
|
Transcriptome-wide survey of gene expression changes and alternative splicing in Trichophyton rubrum in response to undecanoic acid. Sci Rep 2018; 8:2520. [PMID: 29410524 PMCID: PMC5802734 DOI: 10.1038/s41598-018-20738-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/18/2018] [Indexed: 12/29/2022] Open
Abstract
While fatty acids are known to be toxic to dermatophytes, key physiological aspects of the Trichophyton rubrum response to undecanoic acid (UDA), a medium chain saturated fatty acid (C11:0), are not well understood. Thus, we analysed RNA-seq data from T. rubrum exposed to sub-lethal doses of UDA for 3 and 12 h. Three putative pathways were primarily involved in UDA detoxification: lipid metabolism and cellular membrane composition, oxidative stress, and pathogenesis. Biochemical assays showed cell membrane impairment, reductions in ergosterol content, and an increase in keratinolytic activity following UDA exposure. Moreover, we assessed differential exon usage and intron retention following UDA exposure. A key enzyme supplying guanine nucleotides to cells, inosine monophosphate dehydrogenase (IMPDH), showed high levels of intron 2 retention. Additionally, phosphoglucomutase (PGM), which is involved in the glycogen synthesis and degradation as well as cell wall biosynthesis, exhibited a significant difference in exon 4 usage following UDA exposure. Owing to the roles of these enzymes in fungal cells, both have emerged as promising antifungal targets. We showed that intron 2 retention in impdh and exon 4 skipping in pgm might be related to an adaptive strategy to combat fatty acid toxicity. Thus, the general effect of UDA fungal toxicity involves changes to fungal metabolism and mechanisms for regulating pre-mRNA processing events.
Collapse
|