Sex and Genetic Background Influence Superoxide Dismutase (cSOD)-Related Phenotypic Variation in
Drosophila melanogaster.
G3-GENES GENOMES GENETICS 2017. [PMID:
28624774 PMCID:
PMC5555470 DOI:
10.1534/g3.117.043836]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mutations often have drastically different effects in different genetic backgrounds; understanding a gene’s biological function then requires an understanding of its interaction with genetic diversity. The antioxidant enzyme cytosolic copper/zinc superoxide dismutase (cSOD) catalyzes the dismutation of the superoxide radical, a molecule that can induce oxidative stress if its concentration exceeds cellular control. Accordingly, Drosophila melanogaster lacking functional cSOD exhibit a suite of phenotypes including decreased longevity, hypersensitivity to oxidative stress, impaired locomotion, and reduced NADP(H) enzyme activity in males. To date, cSOD-null phenotypes have primarily been characterized using males carrying one allele, cSodn108red, in a single genetic background. We used ANOVA, and the effect size partial eta squared, to partition the amount of variation attributable to cSOD activity, sex, and genetic background across a series of life history, locomotor, and biochemical phenotypes associated with the cSOD-null condition. Overall, the results demonstrate that the cSOD-null syndrome is largely consistent across sex and genetic background, but also significantly influenced by both. The sex-specific effects are particularly striking and our results support the idea that phenotypes cannot be considered to be fully defined if they are examined in limited genetic contexts.
Collapse