1
|
Petővári G, Tóth G, Turiák L, L. Kiss A, Pálóczi K, Sebestyén A, Pesti A, Kiss A, Baghy K, Dezső K, Füle T, Tátrai P, Kovalszky I, Reszegi A. Dynamic Interplay in Tumor Ecosystems: Communication between Hepatoma Cells and Fibroblasts. Int J Mol Sci 2023; 24:13996. [PMID: 37762298 PMCID: PMC10530979 DOI: 10.3390/ijms241813996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Tumors are intricate ecosystems where cancer cells and non-malignant stromal cells, including cancer-associated fibroblasts (CAFs), engage in complex communication. In this study, we investigated the interaction between poorly (HLE) and well-differentiated (HuH7) hepatoma cells and LX2 fibroblasts. We explored various communication channels, including soluble factors, metabolites, extracellular vesicles (EVs), and miRNAs. Co-culture with HLE cells induced LX2 to produce higher levels of laminin β1, type IV collagen, and CD44, with pronounced syndecan-1 shedding. Conversely, in HuH7/LX2 co-culture, fibronectin, thrombospondin-1, type IV collagen, and cell surface syndecan-1 were dominant matrix components. Integrins α6β4 and α6β1 were upregulated in HLE, while α5β1 and αVβ1 were increased in HuH7. HLE-stimulated LX2 produced excess MMP-2 and 9, whereas HuH7-stimulated LX2 produced excess MMP-1. LX2 activated MAPK and Wnt signaling in hepatoma cells, and conversely, hepatoma-derived EVs upregulated MAPK and Wnt in LX2 cells. LX2-derived EVs induced over tenfold upregulation of SPOCK1/testican-1 in hepatoma EV cargo. We also identified liver cancer-specific miRNAs in hepatoma EVs, with potential implications for early diagnosis. In summary, our study reveals tumor type-dependent communication between hepatoma cells and fibroblasts, shedding light on potential implications for tumor progression. However, the clinical relevance of liver cancer-specific miRNAs requires further investigation.
Collapse
Affiliation(s)
- Gábor Petővári
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Gábor Tóth
- MS Proteomics Research Group, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Lilla Turiák
- MS Proteomics Research Group, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Anna L. Kiss
- Department of Human Morphology and Developmental Biology, Semmelweis University, Tűzoltó u. 58, H-1094 Budapest, Hungary
| | - Krisztina Pálóczi
- Department of Genetics, Cell and Immunobiology, Semmelweis University, H-1085 Budapest, Hungary
| | - Anna Sebestyén
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Adrián Pesti
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Üllői út 93, H-1091 Budapest, Hungary
| | - András Kiss
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Üllői út 93, H-1091 Budapest, Hungary
| | - Kornélia Baghy
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Katalin Dezső
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Tibor Füle
- Thermo Fisher Scientific Inc., Váci út. 41-43, H-1134 Budapest, Hungary
| | - Péter Tátrai
- Charles River Laboratories Hungary, Irinyi József utca 4-20, H-1117 Budapest, Hungary
| | - Ilona Kovalszky
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Andrea Reszegi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Üllői út 93, H-1091 Budapest, Hungary
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
2
|
Zheng W, Wang T, Liu C, Yan Q, Zhan S, Li G, Liu X, Jiang Y. Liver transcriptomics reveals microRNA features of the host response in a mouse model of dengue virus infection. Comput Biol Med 2022; 150:106057. [PMID: 36215851 DOI: 10.1016/j.compbiomed.2022.106057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/25/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Organ dysfunction, especially liver injury, caused by dengue virus (DENV) infection has been associated with fatal cases in dengue patients around the world. However, the pathophysiological mechanisms of liver involvement in dengue remain unclear. There is accumulating evidence that miRNAs are playing an important role in regulating viral pathogenesis, and it can help in diagnostic and anti-viral therapies development. METHODS We collected liver tissues of DENV-infected for small RNA sequencing to identify significantly different express miRNAs during dengue virus infection, and the identified target genes of these miRNAs were annotated by biological function and pathway enrichment. RESULTS 31 significantly altered miRNAs were identified, including 16 up-regulated and 15 down-regulated miRNAs. By performing a series of miRNA prediction and signaling pathway enrichment analyses, the down-regulated miRNAs of mmu-miR-484, mmu-miR-1247-5p and mmu-miR-6538 were identified to be the crucial miRNAs. Further analysis revealed that the inflammation and immune responses involving Hippo, PI3K-Akt, MAPK, Wnt, mTOR, TGF-beta, Tight junction, and Platelet activation were modulated collectively by these three key miRNAs during DENV infection. These pathways are considered to be closely associated with the pathogenic mechanism and treatment strategy of dengue patients. CONCLUSION The miRNAs identified by sequencing, especially miR-484 may be the potential therapeutic targets for liver involvement in dengue patients which involves the regulation of vascular permeability and expression of inflammatory cytokines.
Collapse
Affiliation(s)
- Wenjiang Zheng
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, China; Animal Experiment Center, Guangzhou University of Chinese Medicine, China.
| | - Ting Wang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, China.
| | - Chengxin Liu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, China.
| | - Qian Yan
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, China.
| | - Shaofeng Zhan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, China.
| | - Geng Li
- Animal Experiment Center, Guangzhou University of Chinese Medicine, China.
| | - Xiaohong Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, China.
| | - Yong Jiang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, China.
| |
Collapse
|
3
|
Ma J, Huang W, Zhu C, Sun X, Zhang Q, Zhang L, Qi Q, Bai X, Feng Y, Wang C. miR-423-3p activates FAK signaling pathway to drive EMT process and tumor growth in lung adenocarcinoma through targeting CYBRD1. J Clin Lab Anal 2021; 35:e24044. [PMID: 34714955 PMCID: PMC8649330 DOI: 10.1002/jcla.24044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a malignant tumor with a high fatality rate and poor overall survival, while molecular targets diagnosing and alleviating lung cancer remain inadequate. METHODS In this article, we highlighted the upregulation of microRNA-423-3p (miR-423-3p) in LUAD, especially in smokers aged over 40, and revealed that the high expression of miR-423-3p was significantly associated with smoker, age, and pathologic stage of LUAD patients. RESULTS Moreover, overexpressing miR-423-3p could facilitate LUAD cell proliferation, invasion, adhesion, and epithelial-mesenchymal transition (EMT) process, while depleted miR-423-3p caused repressive influence upon it. Mechanically, we identified that miR-423-3p could activate FAK signaling pathway through binding to the 3'-UTR of cytochrome B reductase 1 (CYBRD1). Furthermore, we demonstrated that CYBRD1 was lowly expressed in LUAD, and miR-423-3p overexpression could rescue the impairment of LUAD cell proliferation, invasion, adhesion, and EMT caused by CYBRD1 depletion. Noticeably, miR-423-3p depletion efficiently hindered LUAD tumor growth in vivo. CONCLUSION Collectively, our findings demonstrated that miR-423-3p/CYBRD1 axis could be regarded as a promising biomarker to alleviate the poor LUAD prognosis.
Collapse
Affiliation(s)
- Jun Ma
- Department of Lung CancerTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin’s Clinical Research Center for CancerTianjinChina
- Department of Thoracic SurgeryShanxi Provincial People’s HospitalTaiyuanChina
| | - Wuhao Huang
- Department of Lung CancerTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin’s Clinical Research Center for CancerTianjinChina
| | - Chaonan Zhu
- Department of Thoracic SurgeryNorth China University of Science and Technology Affiliated HospitalTangshanChina
| | - Xiaoyan Sun
- Department of Lung CancerTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin’s Clinical Research Center for CancerTianjinChina
| | - Qiang Zhang
- Department of Lung CancerTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin’s Clinical Research Center for CancerTianjinChina
| | - Lianmin Zhang
- Department of Lung CancerTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin’s Clinical Research Center for CancerTianjinChina
| | - Qi Qi
- Department of Lung CancerTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin’s Clinical Research Center for CancerTianjinChina
| | - Xiaoming Bai
- Department of Thoracic SurgeryShanxi Provincial People’s HospitalTaiyuanChina
| | - Yun Feng
- Department of Thoracic SurgeryShanxi Provincial People’s HospitalTaiyuanChina
| | - Changli Wang
- Department of Lung CancerTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin’s Clinical Research Center for CancerTianjinChina
| |
Collapse
|