1
|
Wang Y, Zhang YR, Ding ZQ, Zhang YC, Sun RX, Zhu HJ, Wang JN, Xu B, Zhang P, Ji JD, Liu QH, Chen X. m6A-Mediated Upregulation of Imprinted in Prader-Willi Syndrome Induces Aberrant Apical-Basal Polarization and Oxidative Damage in RPE Cells. Invest Ophthalmol Vis Sci 2024; 65:10. [PMID: 38315495 PMCID: PMC10851782 DOI: 10.1167/iovs.65.2.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Purpose To reveal the clinical significance, pathological involvement and molecular mechanism of imprinted in Prader-Willi syndrome (IPW) in RPE anomalies that contribute to AMD. Methods IPW expression under pathological conditions were detected by microarrays and qPCR assays. In vitro cultured fetal RPE cells were used to study the pathogenicity induced by IPW overexpression and to analyze its upstream and downstream regulatory networks. Results We showed that IPW is upregulated in the macular RPE-choroid tissue of dry AMD patients and in fetal RPE cells under oxidative stress, inflammation and dedifferentiation. IPW overexpression in fetal RPE cells induced aberrant apical-basal polarization as shown by dysregulated polarized markers, disrupted tight and adherens junctions, and inhibited phagocytosis. IPW upregulation was also associated with RPE oxidative damages, as demonstrated by intracellular accumulation of reactive oxygen species, reduced cell proliferation, and accelerated cell apoptosis. Mechanically, N6-methyladenosine level of the IPW transcript regulated its stability with YTHDC1 as the reader. IPW mediated RPE features by suppressing MEG3 expression to sequester its inhibition on the AKT serine-threonine kinase (AKT)/mammalian target of rapamycin (mTOR) pathway. We also noticed that the mTOR inhibitor rapamycin suppresses the AKT/mTOR pathway to alleviate the IPW-induced RPE anomalies. Conclusions We revealed that IPW overexpression in RPE induces aberrant apical-basal polarization and oxidative damages, thus contributing to AMD progression. We also annotated the upstream and downstream regulatory networks of IPW in RPE. Our findings shed new light on the molecular mechanisms of RPE dysfunctions, and indicate that IPW blockers may be a promising option to treat RPE abnormalities in AMD.
Collapse
Affiliation(s)
- Ying Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ye-Ran Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Zi-Qin Ding
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yi-Chen Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ru-Xu Sun
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Hong-Jing Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jia-Nan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Bei Xu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ping Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jiang-Dong Ji
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qing-Huai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Xue Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Luo Y, Wang H, Wang L, Wu W, Zhao J, Li X, Xiong R, Ding X, Yuan D, Yuan C. LncRNA MEG3: Targeting the Molecular Mechanisms and Pathogenic causes of Metabolic Diseases. Curr Med Chem 2024; 31:6140-6153. [PMID: 37855346 DOI: 10.2174/0109298673268051231009075027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/27/2023] [Accepted: 09/08/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Non-coding RNA is a type of RNA that does not encode proteins, distributed among rRNA, tRNA, snRNA, snoRNA, microRNA and other RNAs with identified functions, where the Long non-coding RNA (lncRNA) displays a nucleotide length over 200. LncRNAs enable multiple biological processes in the human body, including cancer cell invasion and metastasis, apoptosis, cell autophagy, inflammation, etc. Recently, a growing body of studies has demonstrated the association of lncRNAs with obesity and obesity-induced insulin resistance and NAFLD, where MEG3 is related to glucose metabolism, such as insulin resistance. In addition, MEG3 has been demonstrated in the pathological processes of various cancers, such as mediating inflammation, cardiovascular disease, liver disease and other metabolic diseases. OBJECTIVE To explore the regulatory role of lncRNA MEG3 in metabolic diseases. It provides new ideas for clinical treatment or experimental research. METHODS In this paper, in order to obtain enough data, we integrate and analyze the data in the PubMed database. RESULTS LncRNA MEG3 can regulate many metabolic diseases, such as insulin resistance, NAFLD, inflammation and so on. CONCLUSION LncRNA MEG3 has a regulatory role in a variety of metabolic diseases, which are currently difficult to be completely cured, and MEG3 is a potential target for the treatment of these diseases. Here, we review the role of lncRNA MEG3 in mechanisms of action and biological functions in human metabolic diseases.
Collapse
Affiliation(s)
- Yiyang Luo
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Hailin Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Lijun Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Department of Biochemistry, College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Wei Wu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Jiale Zhao
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Xueqing Li
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Ruisi Xiong
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Department of Biochemistry, College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Xueliang Ding
- Department of Clinical Laboratory, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443002, China
| | - Ding Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Department of Biochemistry, College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
3
|
Du J, Su Y, Gao J, Tai Y. The expression and function of long noncoding RNAs in hepatocellular carcinoma. CANCER INNOVATION 2023; 2:488-499. [PMID: 38125766 PMCID: PMC10730004 DOI: 10.1002/cai2.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 12/23/2023]
Abstract
With the deepening of the genome project study, attention on noncoding RNAs is increasing. Long noncoding RNAs (lncRNAs) have become a new research hotspot. A growing number of studies have revealed that lncRNAs are involved in tumorigenesis and tumor suppressor pathways. Aberrant expressions of lncRNAs have been found in a variety of human tumors including hepatocellular carcinoma (HCC). In this review, we provide a brief introduction to lncRNA and highlight recent research on the functions and clinical significance of lncRNAs in HCC.
Collapse
Affiliation(s)
- Jingli Du
- Senior Department of TuberculosisThe 8th Medical Center of PLA General HospitalBeijingChina
| | - Yue Su
- Senior Department of TuberculosisThe 8th Medical Center of PLA General HospitalBeijingChina
| | - Jianzhi Gao
- Department of OncologyZhuozhou Hospital, ZhuozhouHebeiChina
| | - Yanhong Tai
- Department of PathologyThe 5th Medical Center of PLA General HospitalBeijingChina
| |
Collapse
|
4
|
Zhang R, Wang L, Li Y, Gui C, Pei Y, Zhou G. Roles and mechanisms of long non-coding RNAs in age-related macular degeneration. Heliyon 2023; 9:e22307. [PMID: 38027818 PMCID: PMC10679503 DOI: 10.1016/j.heliyon.2023.e22307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Worldwide, age-related macular degeneration (AMD) is a multifactorial progressive fundus disorder that can cause vision impairment and severe central blindness in older adults. Currently, there are no approved prevention or treatment strategies for non-exudative AMD. While targeting VEGF is the main therapeutic approach to delay the degeneration process in exudative AMD, a significant number of patients show insensitivity or ineffectiveness to anti-VEGF therapy. Despite years of research, the exact mechanism underlying drusen formation and macular atrophy in AMD remains unknown. In the pathogenesis of AMD, lncRNAs play crucial roles, as discussed in this paper. This review focuses on the function of dysregulated lncRNAs and the mechanisms by which specific molecules target these lncRNAs in AMD. The analysis reveals that lncRNAs primarily regulate the progression of AMD by mediating apoptosis, epithelial-mesenchymal transition (EMT), dedifferentiation, and oxidative stress in choroidal vascular endothelial cells, retinal pigment epithelium (RPE) cells, and photoreceptors. Consequently, the regulation of apoptosis, dedifferentiation, EMT, and other processes by lncRNAs has emerged as a crucial focus in AMD research.These findings contribute to our understanding of the role of lncRNAs in AMD and their potential as valuable biomarkers. Furthermore, they highlight the need for further basic and clinical studies to explore the value of lncRNAs as biomarkers and potential therapeutic targets for AMD.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030002, China
| | - Lin Wang
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030002, China
| | - Yang Li
- Department of Ophthalmology, Yuncheng Central Hospital, Yuncheng, Shanxi 044000, China
| | - Chenwei Gui
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030002, China
| | - Yajing Pei
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030002, China
| | - Guohong Zhou
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030002, China
| |
Collapse
|
5
|
Hyttinen JMT, Blasiak J, Kaarniranta K. Non-Coding RNAs Regulating Mitochondrial Functions and the Oxidative Stress Response as Putative Targets against Age-Related Macular Degeneration (AMD). Int J Mol Sci 2023; 24:ijms24032636. [PMID: 36768958 PMCID: PMC9917342 DOI: 10.3390/ijms24032636] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Age-related macular degeneration (AMD) is an ever-increasing, insidious disease which reduces the quality of life of millions of elderly people around the world. AMD is characterised by damage to the retinal pigment epithelium (RPE) in the macula region of the retina. The origins of this multi-factorial disease are complex and still not fully understood. Oxidative stress and mitochondrial imbalance in the RPE are believed to be important factors in the development of AMD. In this review, the regulation of the mitochondrial function and antioxidant stress response by non-coding RNAs (ncRNAs), newly emerged epigenetic factors, is discussed. These molecules include microRNAs, long non-coding RNAs, and circular non-coding RNAs. They act mainly as mRNA suppressors, controllers of other ncRNAs, or by interacting with proteins. We include here examples of these RNA molecules which affect various mitochondrial processes and antioxidant signaling of the cell. As a future prospect, the possibility to manipulate these ncRNAs to strengthen mitochondrial and antioxidant response functions is discussed. Non-coding RNAs could be used as potential diagnostic markers for AMD, and in the future, also as therapeutic targets, either by suppressing or increasing their expression. In addition to AMD, it is possible that non-coding RNAs could be regulators in other oxidative stress-related degenerative diseases.
Collapse
Affiliation(s)
- Juha M. T. Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Correspondence:
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 Kuopio, Finland
| |
Collapse
|
6
|
Chiu KL, Chang WS, Tsai CW, Mong MC, Hsia TC, Bau DT. Novel genetic variants in long non-coding RNA MEG3 are associated with the risk of asthma. PeerJ 2023; 11:e14760. [PMID: 36726728 PMCID: PMC9885862 DOI: 10.7717/peerj.14760] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/27/2022] [Indexed: 01/28/2023] Open
Abstract
Background Asthma is the most common chronic inflammatory airway disease worldwide. Asthma is a complex disease whose exact etiologic mechanisms remain elusive; however, it is increasingly evident that genetic factors play essential roles in the development of asthma. The purpose of this study is to identify novel genetic susceptibility loci for asthma in Taiwanese. We selected a well-studied long non-coding RNA (lncRNA), MEG3, which is involved in multiple cellular functions and whose expression has been associated with asthma. We hypothesize that genetic variants in MEG3 may influence the risk of asthma. Methods We genotyped four single nucleotide polymorphisms (SNPs) in MEG3, rs7158663, rs3087918, rs11160608, and rs4081134, in 198 patients with asthma and 453 healthy controls and measured serum MEG3 expression level in a subset of controls. Results The variant AG and AA genotypes of MEG3 rs7158663 were significantly over-represented in the patients compared to the controls (P = 0.0024). In logistic regression analyses, compared with the wild-type GG genotype, the heterozygous variant genotype (AG) was associated with a 1.62-fold [95% confidence interval (CI) [1.18-2.32], P = 0.0093] increased risk and the homozygous variant genotype (AA) conferred a 2.68-fold (95% CI [1.52-4.83], P = 0.003) increased risk of asthma. The allelic test showed the A allele was associated with a 1.63-fold increased risk of asthma (95% CI [1.25-2.07], P = 0.0004). The AG plus AA genotypes were also associated with severe symptoms (P = 0.0148). Furthermore, the AG and AA genotype carriers had lower serum MEG3 expression level than the GG genotype carriers, consistent with the reported downregulation of MEG3 in asthma patients. Conclusion MEG3 SNP rs7158663 is a genetic susceptibility locus for asthma in Taiwanese. Individuals carrying the variant genotypes have lower serum MEG3 level and are at increased risks of asthma and severe symptoms.
Collapse
Affiliation(s)
- Kuo-Liang Chiu
- Division of Chest Medicine, Department of Internal Medicine, Taichung Tzu Chi Hospital, Taichung, Taiwan,School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Shin Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Wen Tsai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Mei-Chin Mong
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Te-Chun Hsia
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Da-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
7
|
Blasiak J, Hyttinen JMT, Szczepanska J, Pawlowska E, Kaarniranta K. Potential of Long Non-Coding RNAs in Age-Related Macular Degeneration. Int J Mol Sci 2021; 22:9178. [PMID: 34502084 PMCID: PMC8431062 DOI: 10.3390/ijms22179178] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of visual impairment in the aging population with poorly known pathogenesis and lack of effective treatment. Age and family history are the strongest AMD risk factors, and several loci were identified to contribute to AMD. Recently, also the epigenetic profile was associated with AMD, and some long non-coding RNAs (lncRNAs) were shown to involve in AMD pathogenesis. The Vax2os1/2 (ventral anterior homeobox 2 opposite strand isoform 1) lncRNAs may modulate the balance between pro- and anti-angiogenic factors in the eye contributing to wet AMD. The stress-induced dedifferentiation of retinal pigment epithelium cells can be inhibited by the ZNF503-AS1 (zinc finger protein 503 antisense RNA 2) and LINC00167 lncRNAs. Overexpression of the PWRN2 (Prader-Willi region non-protein-coding RNA 2) lncRNA aggravated RPE cells apoptosis and mitochondrial impairment induced by oxidative stress. Several other lncRNAs were reported to exert protective or detrimental effects in AMD. However, many studies are limited to an association between lncRNA and AMD in patients or model systems with bioinformatics. Therefore, further works on lncRNAs in AMD are rational, and they should be enriched with mechanistic and clinical studies to validate conclusions obtained in high-throughput in vitro research.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Juha M. T. Hyttinen
- Department of Ophthalmology, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 92-217 Lodz, Poland;
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, 70210 Kuopio, Finland;
- Department of Ophthalmology, Kuopio University Hospital, 70210 Kuopio, Finland
| |
Collapse
|