1
|
A Resource for Cloning and Expression Vectors Designed for Bifidobacteria: Overview of Available Tools and Biotechnological Applications. Methods Mol Biol 2021. [PMID: 33649956 DOI: 10.1007/978-1-0716-1274-3_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2023]
Abstract
Bifidobacteria represent an important group of (mostly) commensal microorganisms, which have enjoyed increasing scientific and industrial attention due to their purported health-promoting attributes. For the latter reason, several species have been granted "generally recognized as safe" (GRAS) and "qualified presumption of safety" (QPS) status by the Food and Drugs Administration (FDA) and European Food Safety Authority (EFSA) organizations. Increasing scientific evidence supports their potential as oral delivery vectors to produce bioactive and therapeutic molecules at intestinal level. In order to achieve an efficient utilization of bifidobacterial strains as health-promoting (food) ingredients, it is necessary to provide evidence on the molecular mechanisms behind their purported beneficial and probiotic traits, and precise mechanisms of interaction with their human (or other mammalian) host. In this context, developing appropriate molecular tools to generate and investigate recombinant strains is necessary. While bifidobacteria have long remained recalcitrant to genetic manipulation, a wide array of Bifidobacterium-specific replicating vectors and genetic modification procedures have been described in literature. The current chapter intends to provide an updated overview on the vectors used to genetically modify and manipulate bifidobacteria, including their general characteristics, reviewing examples of their use to successfully generate recombinant bifidobacterial strains for specific purposes, and providing a general workflow and cautions to design and conduct heterologous expression in bifidobacteria. Knowledge gaps and fields of research that may help to widen the molecular toolbox to improve the functional and technological potential of bifidobacteria are also discussed.
Collapse
|
2
|
Hong N, Ku S, Yuk K, Johnston TV, Ji GE, Park MS. Production of biologically active human interleukin-10 by Bifidobacterium bifidum BGN4. Microb Cell Fact 2021; 20:16. [PMID: 33468130 PMCID: PMC7814708 DOI: 10.1186/s12934-020-01505-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Bifidobacterium spp. are representative probiotics that play an important role in the health of their hosts. Among various Bifidobacterium spp., B. bifidum BGN4 exhibits relatively high cell adhesion to colonic cells and has been reported to have various in vivo and in vitro bio functionalities (e.g., anti-allergic effect, anti-cancer effect, and modulatory effects on immune cells). Interleukin-10 (IL-10) has emerged as a major suppressor of immune response in macrophages and other antigen presenting cells and plays an essential role in the regulation and resolution of inflammation. In this study, recombinant B. bifidum BGN4 [pBESIL10] was developed to deliver human IL-10 effectively to the intestines. RESULTS The vector pBESIL10 was constructed by cloning the human IL-10 gene under a gap promoter and signal peptide from Bifidobacterium spp. into the E. coli-Bifidobacterium shuttle vector pBES2. The secreted human IL-10 from B. bifidum BGN4 [pBESIL10] was analyzed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), Western Blotting, and enzyme-linked immunosorbent assay (ELISA). More than 1,473 ± 300 ng/mL (n = 4) of human IL-10 was obtained in the cell free culture supernatant of B. bifidum BGN4 [pBESIL10]. This productivity is significantly higher than other previously reported human IL-10 level from food grade bacteria. In vitro functional evaluation of the cell free culture supernatant of B. bifidum BGN4 [pBESIL10] revealed significantly inhibited interleukin-6 (IL-6) production in lipopolysaccharide (LPS)-induced Raw 264.7 cells (n = 6, p < 0.0001) and interleukin-8 (IL-8) production in LPS-induced HT-29 cells (n = 6, p < 0.01) or TNFα-induced HT-29 cells (n = 6, p < 0.001). CONCLUSION B. bifidum BGN4 [pBESIL10] efficiently produces and secretes significant amounts of biologically active human IL-10. The human IL-10 production level in this study is the highest of all human IL-10 production reported to date. Further research should be pursued to evaluate B. bifidum BGN4 [pBESIL10] producing IL-10 as a treatment for various inflammation-related diseases, including inflammatory bowel disease, rheumatoid arthritis, allergic asthma, and cancer immunotherapy.
Collapse
Affiliation(s)
- Nayoun Hong
- Department of Food and Nutrition, Research Institute of Ecology, SeoulNationalUniversity, Seoul, 08826 Korea
| | - Seockmo Ku
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN 37132 USA
| | - Kyungjin Yuk
- Research Center, BIFIDO Co., Ltd, Hongcheon, 25117 Korea
| | - Tony V. Johnston
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN 37132 USA
| | - Geun Eog Ji
- Department of Food and Nutrition, Research Institute of Ecology, SeoulNationalUniversity, Seoul, 08826 Korea
- Research Center, BIFIDO Co., Ltd, Hongcheon, 25117 Korea
| | | |
Collapse
|
3
|
Engineer probiotic bifidobacteria for food and biomedical applications - Current status and future prospective. Biotechnol Adv 2020; 45:107654. [DOI: 10.1016/j.biotechadv.2020.107654] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/14/2020] [Accepted: 11/01/2020] [Indexed: 12/15/2022]
|
4
|
Mauras A, Chain F, Faucheux A, Ruffié P, Gontier S, Ryffel B, Butel MJ, Langella P, Bermúdez-Humarán LG, Waligora-Dupriet AJ. A New Bifidobacteria Expression SysTem (BEST) to Produce and Deliver Interleukin-10 in Bifidobacterium bifidum. Front Microbiol 2018; 9:3075. [PMID: 30622516 PMCID: PMC6308194 DOI: 10.3389/fmicb.2018.03075] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/29/2018] [Indexed: 12/17/2022] Open
Abstract
In the last years there has been a growing interest in the use of genetically modified bacteria to deliver molecules of therapeutic interest at mucosal surfaces. Due to the well-recognized probiotic properties of some strains, bifidobacteria represent excellent candidates for the development of live vehicles to produce and deliver heterologous proteins at mucosal surfaces. However, very few studies have considered this genus because of its complexity to be genetically manipulated. In this work, we report the development of a new Bifidobacteria Expression SysTem (BEST) allowing the production of heterologous proteins in Bifidobacterium bifidum. This system is based on: i) the broad host range plasmid pWV01, ii) a stress-inducible promoter, and iii) two different signal peptides (SPs) one issued from Lactococcus lactis (SPExp4) and issued from Bifidobacterium longum (SPBL1181). The functionality of BEST system was validated by cloning murine interleukin-10 (IL-10) and establishing the resulting plasmids (i.e., pBESTExp4:IL-10 and pBESTBL1181:IL-10) in the strain of B. bifidum BS42. We then demonstrated in vitro that recombinant B. bifidum BS42 harboring pBESTBL1181:IL-10 plasmid efficiently secreted IL-10 and that this secretion was significantly higher (sevenfold) than its counterpart B. bifidum BS42 harboring pBESTExp4:IL-10 plasmid. Finally, we validated in vivo that recombinant B. bifidum strains producing IL-10 using BEST system efficiently delivered this cytokine at mucosal surfaces and exhibit beneficial effects in a murine model of low-grade intestinal inflammation.
Collapse
Affiliation(s)
- Aurélie Mauras
- EA 4065, Ecosystème Intestinal, Probiotiques, Antibiotiques, Faculté de Pharmacie de Paris, DHU Risques et Grossesse, Université Paris Descartes, Paris, France
| | - Florian Chain
- INRA, Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Aurélie Faucheux
- EA 4065, Ecosystème Intestinal, Probiotiques, Antibiotiques, Faculté de Pharmacie de Paris, DHU Risques et Grossesse, Université Paris Descartes, Paris, France
| | - Pauline Ruffié
- INRA, Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sophie Gontier
- INRA, Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Bernhard Ryffel
- UMR 7355 CNRS, Laboratory of Experimental and Molecular Immunology and Neurogenetics, University of Orleans, Orleans, France
| | - Marie-José Butel
- EA 4065, Ecosystème Intestinal, Probiotiques, Antibiotiques, Faculté de Pharmacie de Paris, DHU Risques et Grossesse, Université Paris Descartes, Paris, France
| | - Philippe Langella
- INRA, Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Luis G Bermúdez-Humarán
- INRA, Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Anne-Judith Waligora-Dupriet
- EA 4065, Ecosystème Intestinal, Probiotiques, Antibiotiques, Faculté de Pharmacie de Paris, DHU Risques et Grossesse, Université Paris Descartes, Paris, France
| |
Collapse
|
5
|
Production of functional human CuZn-SOD and EC-SOD in bitransgenic cloned goat milk. Transgenic Res 2018; 27:343-354. [PMID: 29926349 DOI: 10.1007/s11248-018-0080-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/26/2018] [Indexed: 12/16/2022]
Abstract
Human copper/zinc superoxide dismutase (CuZn-SOD) and extracellular superoxide dismutase (EC-SOD) are two superoxide dismutases that scavenge reactive oxygen species (ROS). Their biological role of eliminating oxidative stress caused by excessive ROS levels in living organisms has been utilized in medical treatment, preventing skin photoaging and food preservation. In this study, we employed two sequences that encode human CuZn-SOD and EC-SOD, along with goat beta-casein 5' and 3' regulatory elements, to construct mammary gland-specific expression vectors. Bitransgenic goats were generated using somatic cell nuclear transfer (SCNT), which employed co-transfection to generate bitransgenic goat fetal fibroblast cells as donor cells, and the expression of human CuZn-SOD and EC-SOD and their biological activities were assayed in the milk. PCR and Southern blot analysis confirmed that the cloned goat harbors both hCuZn-SOD and hEC-SOD transgenes. rhCuZn-SOD and rhEC-SOD were expressed in the mammary glands of bitransgenic goat, as determined by western blotting. The expression levels were 100.14 ± 5.09 mg/L for rhCuZn-SOD and 279.10 ± 5.38 mg/L for rhEC-SOD, as determined using ELISA. A total superoxide dismutase assay with WST-8 indicates that the biological activity of rhCuZn-SOD and rhEC-SOD in goat milk is 1451 ± 136 U/mL. The results indicate that two expression vectors can simultaneously transfect goat fetal fibroblast cells as donor cells to produce transgenic goats by SCNT, and the CuZn-SOD and EC-SOD proteins secreted in the mammary glands showed biological activity. The present study thus describes an initial step in the production of recombinant human SODs that may potentially be used for therapeutic purposes.
Collapse
|
6
|
Liu M, Li S, Zhang Q, Xu Z, Wang J, Sun H. Oral engineered Bifidobacterium longum expressing rhMnSOD to suppress experimental colitis. Int Immunopharmacol 2018; 57:25-32. [PMID: 29455070 DOI: 10.1016/j.intimp.2018.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/22/2018] [Accepted: 02/09/2018] [Indexed: 12/13/2022]
Abstract
In recent years, using genetic engineering and bioengineering techniques, Bifidobacterium as a carrier to express specific functions of the protein or polypeptide, has become a new treatment for disease. Ulcerative colitis (UC) is a type of inflammatory bowel diseases (IBD). Although the cause of this inflammatory disorder is still unknown, a large amount of evidence suggests that ulcerative colitis is associated with increased activity of reactive oxygen species (ROS), manganese superoxide dismutase (MnSOD) is a kind of superoxide dismutase (SOD) has been demonstrated to play a key role in the pathophysiology of colitis. Here, we explored the Bifidobacterium as a drug delivery system to orally deliver a potent anti-inflammatory but poor penetration and stability antioxidant enzymes human MnSOD, transported into cells by a penetratin PEP-1. We constructed an expression vector expressing PEP-1-hMnSOD fusion protein, and successfully expressed hMnSOD fusion protein in engineered Bifidobacterium. Then we identified the bioactivity of engineered Bifidobacterium in LPS-induced inflammatory cell model. Finally, we used Bifidobacterium expressing PEP-1-hMnSOD fusion protein against DSS-induced ulcerative colitis mice. B. longum-PEP-1-rhMnSOD can successfully express rhMnSOD in the colon. We found that levels of inflammatory cytokines TNF-α, IL-1β, IL-6 and IL-8 as well as histological damage in colonic tissues showed that engineered Bifidobacterium effectively reduced dextran sulfate sodium(DSS)-induced ulcerative colitis, we also tested the MPO, verified the above conclusions. These results suggest that oral Bifidobacterium expressing PEP-1-hMnSOD fusion protein can be treated as a new method of UC treatment.
Collapse
Affiliation(s)
- Mengge Liu
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Shiyu Li
- Genetic Engineering Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Qian Zhang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhenrui Xu
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jiajia Wang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Hanxiao Sun
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
7
|
Zhang Q, Liu M, Li S, Xu Z, Wang J, Wang Y, Fei Z, Huang W, Sun H. Oral Bifidobacterium longum expressing GLP-2 improves nutrient assimilation and nutritional homeostasis in mice. J Microbiol Methods 2018; 145:87-92. [PMID: 29329748 DOI: 10.1016/j.mimet.2018.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 01/24/2023]
Abstract
Bifidobacterium has been developed for the oral delivery of peptides and has the added beneficial effect on our bodies through its probiotic properties. Here, we utilize Bifidobacterium as a delivery system to orally deliver Glucagon like peptide-2 (GLP-2). We constructed vector derived from pET-31b(+) to construct a Bifidobacterium longum expressing GLP-2. We then determined the bioactivity of recombinant Bifidobacterium in Caco-2 cells. Finally, we quantified newly synthesized ApoB48 and chylomicron production in mice infused with exogenous GLP-2 or Bifidobacterium expressing GLP-2. Results based on secretion of the triglyceride (TG)-rich lipoprotein (TRL)-ApoB48 and secretion of chylomicron revealed that recombinant Bifidobacterium was efficient in treating intestinal dysfunction,suggesting an alternative way to use Bifidobacterium as a delivery system to deliver GLP-2 for gastrointestinal nutrition coordination.
Collapse
Affiliation(s)
- Qian Zhang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Mengge Liu
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Shiyu Li
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhenrui Xu
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jiajia Wang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yuzhe Wang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhengbin Fei
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wenhua Huang
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hanxiao Sun
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
8
|
Wei P, Yang Y, Liu Z, Huang J, Gong Y, Sun H. Oral Bifidobacterium longum expressing alpha-melanocyte-stimulating hormone to fight experimental colitis. Drug Deliv 2015; 23:2058-64. [PMID: 26673899 DOI: 10.3109/10717544.2015.1122672] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The oral delivery of peptides is a highly attractive treatment approach. However, the harsh environment of the gastrointestinal tract limits its application. Here, we utilize Bifidobacterium as a delivery system to orally deliver a potent anti-inflammatory but short duration peptide alpha-melanocyte-stimulating hormone (α-MSH) against experimental colitis. The aim of our study was to facilitate the efficient oral delivery of α-MSH. We designed a vector of pBDMSH and used it to construct a Bifidobacterium longum expressing α-MSH. We then determined the bioactivity of recombinant Bifidobacterium in lipopolysaccharide-induced inflammatory models of HT-29 cells. Finally, we used Bifidobacterium expressing α-MSH against dextran sulfate sodium (DSS)-induced ulcerative colitis mice. Results based on the myeloperoxidase activity, the levels of inflammatory cytokines TNF-α, IL-1β, IL-6, and IL-10 and the histological injury of colon tissue reveal recombinant Bifidobacterium was efficient in attenuating DSS-induced ulcerative colitis, suggesting an alternative way to use Bifidobacterium as a delivery system to deliver α-MSH for DSS-induced ulcerative colitis therapy.
Collapse
Affiliation(s)
- Pijin Wei
- a Institute of Genomic Medicine Research, College of Pharmacy, Jinan University , Guangzhou , People's Republic of China
| | - Yan Yang
- a Institute of Genomic Medicine Research, College of Pharmacy, Jinan University , Guangzhou , People's Republic of China
| | - Zhaobing Liu
- a Institute of Genomic Medicine Research, College of Pharmacy, Jinan University , Guangzhou , People's Republic of China
| | - Junli Huang
- a Institute of Genomic Medicine Research, College of Pharmacy, Jinan University , Guangzhou , People's Republic of China
| | - Yahui Gong
- a Institute of Genomic Medicine Research, College of Pharmacy, Jinan University , Guangzhou , People's Republic of China
| | - Hanxiao Sun
- a Institute of Genomic Medicine Research, College of Pharmacy, Jinan University , Guangzhou , People's Republic of China
| |
Collapse
|
9
|
Wei P, Yang Y, Ding Q, Li X, Sun H, Liu Z, Huang J, Gong Y. Oral delivery of Bifidobacterium longum expressing α-melanocyte-stimulating hormone to combat ulcerative colitis. J Med Microbiol 2015; 65:160-168. [PMID: 26567174 DOI: 10.1099/jmm.0.000197] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
α-Melanocyte-stimulating hormone (α-MSH) is a tridecapeptide derived from pro-opiomelanocortin that exhibits potent anti-inflammatory properties by regulating the production of inflammatory mediators. This peptide has been well established in several inflammatory models, including inflammatory bowel disease (IBD). However, its extremely short duration in vivo limits its clinical application. To address this limitation, Bifidobacterium was used here as a carrier to deliver α-MSH. We utilized α-MSH-engineered Bifidobacterium against IBD, which is closely linked to immune and intestinal microbiota dysfunction. First, we constructed a Bifidobacterium longum secreting α-MSH (B. longum-α-MSH). We then tested the recombinant α-MSH expression and determined its bioactivity in HT-29 cells. To assess its effectiveness, B. longum-α-MSH was used against an ulcerative colitis (UC) model in rats induced by dextran sulfate sodium. The data showed that α-MSH expression in B. longum-α-MSH was effective, and its biological activity was similar to the synthesized one. This UC model experiment indicated that B. longum-α-MSH successfully colonized the intestinal gut, expressed bioactive α-MSH and had a significant anti-inflammatory effect. The results demonstrate the feasibility of preventing IBD by using B. longum-α-MSH.
Collapse
Affiliation(s)
- Pijin Wei
- Institute of Genomic Medicine Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Yan Yang
- Institute of Genomic Medicine Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Qing Ding
- Institute of Genomic Medicine Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Xiuying Li
- Institute of Genomic Medicine Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Hanxiao Sun
- Institute of Genomic Medicine Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Zhaobing Liu
- Institute of Genomic Medicine Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Junli Huang
- Institute of Genomic Medicine Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Yahui Gong
- Institute of Genomic Medicine Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| |
Collapse
|
10
|
A Phytase-Based Reporter System for Identification of Functional Secretion Signals in Bifidobacteria. PLoS One 2015; 10:e0128802. [PMID: 26086721 PMCID: PMC4472781 DOI: 10.1371/journal.pone.0128802] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 04/30/2015] [Indexed: 11/19/2022] Open
Abstract
Health-promoting effects have been attributed to a number of Bifidobacterium sp. strains. These effects as well as the ability to colonise the host depend on secreted proteins. Moreover, rational design of protein secretion systems bears the potential for the generation of novel probiotic bifidobacteria with improved health-promoting or therapeutic properties. To date, there is only very limited data on secretion signals of bifidobacteria available. Using in silico analysis, we demonstrate that all bifidobacteria encode the major components of Sec-dependent secretion machineries but only B. longum strains harbour Tat protein translocation systems. A reporter plasmid for secretion signals in bifidobacteria was established by fusing the coding sequence of the signal peptide of a sialidase of Bifidobacterium bifidum S17 to the phytase gene appA of E. coli. The recombinant strain showed increased phytase activity in spent culture supernatants and reduced phytase levels in crude extracts compared to the control indicating efficient phytase secretion. The reporter plasmid was used to screen seven predicted signal peptides in B. bifidum S17 and B. longum E18. The tested signal peptides differed substantially in their efficacy to mediate protein secretion in different host strains. An efficient signal peptide was used for expression and secretion of a therapeutically relevant protein in B. bifidum S17. Expression of a secreted cytosine deaminase led to a 100-fold reduced sensitivity of B. bifidum S17 to 5-fluorocytosine compared to the non-secreted cytosine deaminase suggesting efficient conversion of 5-fluorocytosine to the cytotoxic cancer drug 5-fluorouracil by cytosine deaminase occurred outside the bacterial cell. Selection of appropriate signal peptides for defined protein secretion might improve therapeutic efficacy as well as probiotic properties of bifidobacteria.
Collapse
|
11
|
Wei C, Xun AY, Wei XX, Yao J, Wang JY, Shi RY, Yang GH, Li YX, Xu ZL, Lai MG, Zhang R, Wang LS, Zeng WS. Bifidobacteria Expressing Tumstatin Protein for Antitumor Therapy in Tumor-Bearing Mice. Technol Cancer Res Treat 2015; 15:498-508. [PMID: 25969440 DOI: 10.1177/1533034615581977] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 11/20/2013] [Indexed: 11/15/2022] Open
Abstract
Tumstatin (Tum) is a powerful angiostatin that inhibits proliferation and induces apoptosis of tumorous vascular endothelial cells. A nonpathogenic and anaerobic bacterium, Bifidobacterium longum (BL), selectively localizes to and proliferates in the hypoxia location within solid tumor. The aims of this study were to develop a novel delivery system for Tum using engineered Bifidobacterium and to investigate the inhibitory effect of Tum on tumor in mice. A vector that enabled the expression of Tum under the control of the pBBADs promoter of BL was constructed and transformed into BL NCC2705 by electroporation. The mouse colon carcinoma cells CT26 (1 × 10(7)/mL) were subcutaneously inserted in the left armpit of BALB/c mice. The tumor-bearing mice were treated with Tum-transformed BL, and green fluorescent protein (GFP)-transformed BL was used as a negative control. The microvessel density (MVD) in the transplanted tumor was determined, and terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick end labeling was used to detect apoptosis of vascular endothelial cells in transplanted tumor. The in vitro expression of Tum was examined in BL after l-arabinose induction. Bifidobacterium longum with pBBAD-Tum (BL-Tum) showed significant antitumor effect in tumor-bearing mice. The weight, volume, growth, and MVD, as well as the percentage of apoptotic vascular endothelial cells of transplanted tumors in the tumor-bearing mice treated with Tum-transformed BL were all significantly lower than those in the GFP negative control group. Intragastric administration, injection in tumor and vena caudalis injection of Tum-transformed BL exerted marked antitumor effects in tumor-bearing mice. This is the first demonstration of the utilization of Tum-transformed BL as a specific gene delivery system for treating tumor.
Collapse
Affiliation(s)
- C Wei
- Department of Gastroenteroloy, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen animal genetic engineering technology research and Development Center, Shenzhen, Guangdong Province, China
| | - A Y Xun
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - X X Wei
- Department of Infectious Diseases, Xinxiang Medical College, Xinxiang, Guangdong Province, China
| | - J Yao
- Department of Gastroenteroloy, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen animal genetic engineering technology research and Development Center, Shenzhen, Guangdong Province, China
| | - J Y Wang
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - R Y Shi
- Department of Gastroenteroloy, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen animal genetic engineering technology research and Development Center, Shenzhen, Guangdong Province, China
| | - G H Yang
- Department of Gastroenteroloy, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen animal genetic engineering technology research and Development Center, Shenzhen, Guangdong Province, China
| | - Y X Li
- Department of Gastroenteroloy, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen animal genetic engineering technology research and Development Center, Shenzhen, Guangdong Province, China
| | - Z L Xu
- Department of Gastroenteroloy, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen animal genetic engineering technology research and Development Center, Shenzhen, Guangdong Province, China
| | - M G Lai
- Department of Gastroenteroloy, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen animal genetic engineering technology research and Development Center, Shenzhen, Guangdong Province, China
| | - R Zhang
- Department of Gastroenteroloy, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen animal genetic engineering technology research and Development Center, Shenzhen, Guangdong Province, China
| | - L-S Wang
- Department of Gastroenteroloy, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen animal genetic engineering technology research and Development Center, Shenzhen, Guangdong Province, China
| | - W S Zeng
- Department of Cell Biology, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
12
|
Guglielmetti S, Mayo B, Álvarez-Martín P. Mobilome and genetic modification of bifidobacteria. Benef Microbes 2013; 4:143-66. [PMID: 23271067 DOI: 10.3920/bm2012.0031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Until recently, proper development of molecular studies in Bifidobacterium species has been hampered by growth difficulties, because of their exigent nutritive requirements, oxygen sensitivity and lack of efficient genetic tools. These studies, however, are critical to uncover the cross-talk between bifidobacteria and their hosts' cells and to prove unequivocally the supposed beneficial effects provided through the endogenous bifidobacterial populations or after ingestion as probiotics. The genome sequencing projects of different bifidobacterial strains have provided a wealth of genetic data that will be of much help in deciphering the molecular basis of the physiological properties of bifidobacteria. To this end, the purposeful development of stable cloning and expression vectors based on robust replicons - either from temperate phages or resident plasmids - is still needed. This review addresses the current knowledge on the mobile genetic elements of bifidobacteria (prophages, plasmids and transposons) and summarises the different types of vectors already available, together with the transformation procedures for introducing DNA into the cells. It also covers recent molecular studies performed with such vectors and incipient results on the genetic modification of these organisms, establishing the basis that would allow the use of bifidobacteria for future biotechnological applications.
Collapse
Affiliation(s)
- S Guglielmetti
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Sezione di Microbiologia Industriale, Università degli studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | | | | |
Collapse
|
13
|
Accessing the inaccessible: molecular tools for bifidobacteria. Appl Environ Microbiol 2012; 78:5035-42. [PMID: 22582076 DOI: 10.1128/aem.00551-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bifidobacteria are an important group of the human intestinal microbiota that have been shown to exert a number of beneficial probiotic effects on the health status of their host. Due to these effects, bifidobacteria have attracted strong interest in health care and food industries for probiotic applications and several species are listed as so-called "generally recognized as safe" (GRAS) microorganisms. Moreover, recent studies have pointed out their potential as an alternative or supplementary strategy in tumor therapy or as live vaccines. In order to study the mechanisms by which these organisms exert their beneficial effects and to generate recombinant strains that can be used as drug delivery vectors or live vaccines, appropriate molecular tools are indispensable. This review provides an overview of the currently available methods and tools to generate recombinant strains of bifidobacteria. The currently used protocols for transformation of bifidobacteria, as well as replicons, selection markers, and determinants of expression, will be summarized. We will further discuss promoters, terminators, and localization signals that have been used for successful generation of expression vectors.
Collapse
|
14
|
Fukiya S, Hirayama Y, Sakanaka M, Kano Y, Yokota A. Technological advances in bifidobacterial molecular genetics: application to functional genomics and medical treatments. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2012; 31:15-25. [PMID: 24936345 PMCID: PMC4034290 DOI: 10.12938/bmfh.31.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 01/17/2012] [Indexed: 11/29/2022]
Abstract
Bifidobacteria are well known as beneficial intestinal bacteria that exert
health-promoting effects in humans. In addition to physiological and immunological
investigations, molecular genetic technologies have been developed and have recently
started to be applied to clarify the molecular bases of
host-Bifidobacterium interactions. These technologies include
transformation technologies and Escherichia coli-Bifidobacterium shuttle
vectors that enable heterologous gene expression. In this context, a plasmid artificial
modification method that protects the introduced plasmid from the restriction system in
host bifidobacteria has recently been developed to increase transformation efficiency. On
the other hand, targeted gene inactivation systems, which are vital for functional
genomics, seemed far from being practically applicable in bifidobacteria. However,
remarkable progress in this technology has recently been achieved, enabling functional
genomics in bifidobacteria. Integrated use of these molecular genetic technologies with
omics-based analyses will surely boost characterization of the molecular basis underlying
beneficial effects of bifidobacteria. Applications of recombinant bifidobacteria to
medical treatments have also progressed.
Collapse
Affiliation(s)
- Satoru Fukiya
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Yosuke Hirayama
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Mikiyasu Sakanaka
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Yasunobu Kano
- Department of Molecular Genetics, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Atsushi Yokota
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| |
Collapse
|
15
|
Yu Z, Huang Z, Shao C, Huang Y, Zhang F, Yang J, Deng L, Zeng Z, Deng Q, Zeng W. Oral administration of interferon-α2b-transformed Bifidobacterium longum protects BALB/c mice against coxsackievirus B3-induced myocarditis. Virol J 2011; 8:525. [PMID: 22151967 DOI: 10.1186/1743-422x-8-525] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 12/08/2011] [Indexed: 11/10/2022] Open
Abstract
Multiple reports have claimed that low-dose orally administered interferon (IFN)-α is beneficial in the treatment of many infectious diseases and provides a viable alternative to high-dose intramuscular treatment. However, research is needed on how to express IFN stably in the gut. Bifidobacterium may be a suitable carrier for human gene expression and secretion in the intestinal tract for the treatment of gastrointestinal diseases. We reported previously that Bifidobacterium longum can be used as a novel oral delivery of IFN-α. IFN-transformed B. longum can exert an immunostimulatory role in mice; however the answer to whether this recombinant B. longum can be used to treat virus infection still remains elusive. Here, we investigated the efficacy of IFN-transformed B. longum administered orally on coxsackie virus B3 (CVB3)-induced myocarditis in BALB/c mice. Our data indicated that oral administration of IFN-transformed B. longum for 2 weeks after virus infection reduced significantly the severity of virus-induced myocarditis, markedly down regulated virus titers in the heart, and induced a T helper 1 cell pattern in the spleen and heart compared with controls. Oral administration of the IFN-transformed B. longum, therefore, may play a potential role in the treatment of CVB3-induced myocarditis.
Collapse
Affiliation(s)
- Zhijian Yu
- Department of Infectious Diseases, the Affiliated Shenzhen Nanshan Hospital of Guangdong Medical College, No 89 Taoyuan Road, Nanshan district, Shenzhen, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yu Z, Huang Z, Sao C, Huang Y, Zhang F, Yang J, Lian J, Zeng Z, Luo W, Zeng W, Deng Q. Bifidobacterium as an oral delivery carrier of interleukin-12 for the treatment of Coxsackie virus B3-induced myocarditis in the Balb/c mice. Int Immunopharmacol 2011; 12:125-30. [PMID: 22088614 DOI: 10.1016/j.intimp.2011.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/29/2011] [Accepted: 10/31/2011] [Indexed: 10/15/2022]
Abstract
IL-12 plays an important role in the treatment of many infectious diseases by being administered intravenously or intramuscularly. However, intravenous or intramuscular administration is difficult and inconvenient and may cause side effects. The aim of this study is to develop a novel oral delivery system for IL-12 using genetically engineered Bifidobacterium longum as the carrier and further investigate the efficacy of IL-12-expressed B. longum on the coxsackie virus B3 (CVB3)-induced myocarditis in mice. A mIL-12 gene expression vector pBBADs-IL-12 for B. longum was constructed and transformed into Bifidobacterium. Subsequently, the expression of mIL-12 in the engineered B. longum was identified in vitro by western blot and enzyme-linked immunosorbent assay (ELISA) after l-arabinose induction. Moreover, our data indicated that oral administration of IL-12-expressed B. longum for two weeks after CVB3 infection in the Balb/c mice could downregulate the severity of virus-induced myocarditis, markedly reduce the virus titers in the heart and induce a Th1 pattern in the spleen and heart compared with the controls. In conclusion, a novel oral delivery system of Bifidobacterium for murine IL-12 has been successfully established. Oral administration of mIL-12-transformed B. longum may play a therapeutic role in the treatment of CVB3-induced myocarditis in the mice.
Collapse
Affiliation(s)
- Zhijian Yu
- Department of Infectious Diseases, Shenzhen Nanshan People's Hospital, Guangdong Medical College, Shenzhen, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Since the discovery in 1899 of bifidobacteria as numerically dominant microbes in the feces of breast-fed infants, there have been numerous studies addressing their role in modulating gut microflora as well as their other potential health benefits. Because of this, they are frequently incorporated into foods as probiotic cultures. An understanding of their full interactions with intestinal microbes and the host is needed to scientifically validate any health benefits they may afford. Recently, the genome sequences of nine strains representing four species of Bifidobacterium became available. A comparative genome analysis of these genomes reveals a likely efficient capacity to adapt to their habitats, with B. longum subsp. infantis exhibiting more genomic potential to utilize human milk oligosaccharides, consistent with its habitat in the infant gut. Conversely, B. longum subsp. longum exhibits a higher genomic potential for utilization of plant-derived complex carbohydrates and polyols, consistent with its habitat in an adult gut. An intriguing observation is the loss of much of this genome potential when strains are adapted to pure culture environments, as highlighted by the genomes of B. animalis subsp. lactis strains, which exhibit the least potential for a gut habitat and are believed to have evolved from the B. animalis species during adaptation to dairy fermentation environments.
Collapse
Affiliation(s)
- Ju-Hoon Lee
- Department of Food Science and Nutrition, Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Ave., St. Paul, Minnesota 55108
| | - Daniel J. O'Sullivan
- Department of Food Science and Nutrition, Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Ave., St. Paul, Minnesota 55108
| |
Collapse
|
18
|
Khokhlova EV, Efimov BA, Kafarskaia LI, Shkoporov AN. Heterologous expression of secreted biologically active human interleukin-10 in Bifidobacterium breve. Arch Microbiol 2010; 192:769-74. [PMID: 20631991 DOI: 10.1007/s00203-010-0606-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/03/2010] [Accepted: 07/05/2010] [Indexed: 10/19/2022]
Abstract
Construction of Bifidobacterium breve capable of production of secreted biologically active human interleukin-10 (hIL-10) is described. ORF coding for full-length mature human interleukin-10 was cloned into a series of expression vectors. This resulted in generation of translational fusions between hIL-10 and signal peptides sequences derived from Bifidobacterium breve genes sec2, apuB and B. adolescentis gene amyB under the control of constitutively active bifidobacterial promoter. We have shown that fusion to amyB signal peptide resulted in highest expression level of hIL-10 at the mRNA and protein level. Secreted hIL-10 was highly unstable in bifidobacterial culture supernatants in standard growth conditions. However, incubation of stationary cultures in buffered tissue culture medium resulted in production of stable biologically active hIL-10, albeit in low amounts (1.9 ng/ml).
Collapse
Affiliation(s)
- E V Khokhlova
- Department of Microbiology and Virology, Russian State Medical University, Moscow, Russian Federation
| | | | | | | |
Collapse
|
19
|
Increased mRNA expression of interferon-induced Mx1 and immunomodulation following oral administration of IFN-α2b-transformed B. longum to mice. Arch Microbiol 2010; 192:633-8. [DOI: 10.1007/s00203-010-0589-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 05/04/2010] [Accepted: 05/12/2010] [Indexed: 10/19/2022]
|
20
|
Zhu LP, Yin Y, Xing J, Li C, Kou L, Hu B, Wu ZW, Wang JJ, Xu GX. Therapeutic efficacy of Bifidobacterium longum-mediated human granulocyte colony-stimulating factor and/or endostatin combined with cyclophosphamide in mouse-transplanted tumors. Cancer Sci 2009; 100:1986-90. [PMID: 19678823 PMCID: PMC11158145 DOI: 10.1111/j.1349-7006.2009.01275.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Granulocyte colony-stimulating factor (GCSF) is frequently used as an adjunctive agent in tumor chemotherapy. Bifidobacterium longums (B. longum) attracted researchers' interests due to its enhancement of immunity and selective location in solid tumors. B. longum-pBV22210-endostatin (Endo) was proved to have a definite inhibitive effect on tumor growth in our previous study. In the present study, we evaluated the effects of B. longum-pBV22210-GCSF and/or B. longum-pBV22210-Endo combined with cyclophosphamide (CTX) on H22 and S180 tumor-bearing mice. Based on our previous work, the plasmid pBV22210-GCSF was constructed and transformed by electroporation into B. longum. The B. longum-pBV22210-GCSF and/or B. longum-pBV22210-Endo combined with CTX were applied to treat H22 and S180 tumor-bearing mice. A leukocyte count was carried out and the tumor inhibition rate was calculated after treatment. In our study, CTX combined with B. longum-pBV22210-GCSF significantly raised the leukocyte level of tumor-bearing mice, while combined with B. longum-pBV22210-GCSF alone or B. longum-pBV22210-Endo alone combinations with CTX inhibited tumor growth by over 65%. The results showed that B. longum-pBV22210-GCSF had an effective antagonistic effect on bone marrow inhibited by CTX and could inhibit tumor growth when it was combined with B. longum-pBV22210-Endo and CTX. Our results provide an enhanced understanding of B. longum and GCSF as well as their potential as an adjunctive approach in cancer gene therapy.
Collapse
Affiliation(s)
- Li-Ping Zhu
- Department of Biological Science and Technology and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Jiangsu Research Center for Gene Pharmaceutical Engineering and Technology, Suzhou, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Signal peptide of Arabinosidase enhances secretion of interferon-α2b protein by Bifidobacteria longum. Arch Microbiol 2009; 191:681-6. [DOI: 10.1007/s00203-009-0496-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 07/14/2009] [Accepted: 07/16/2009] [Indexed: 10/20/2022]
|
22
|
Hu B, Kou L, Li C, Zhu LP, Fan YR, Wu ZW, Wang JJ, Xu GX. Bifidobacterium longum as a delivery system of TRAIL and endostatin cooperates with chemotherapeutic drugs to inhibit hypoxic tumor growth. Cancer Gene Ther 2009; 16:655-63. [PMID: 19229287 DOI: 10.1038/cgt.2009.7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In our previous study, we have shown that vector pBV22210 containing a chloramphenicol resistance and a cryptic plasmid pMB1 from Bifidobacterium longum strain could stably replicate and did not significantly affect the biological characteristics of B. longum. In this study, B. longum was transfected by electroporation with pBV22210 encoding the extracellular domain of TRAIL (B. longum-pBV22210-TRAIL) and its carbohydrate fermentation and growth curve were determined, and its location and inhibitory effect on tumor xenografts in mice were also examined. The results further proved that gene transfection did not change the main biochemical characteristics of B. longum. The results also showed that B. longum-pBV22210-TRAIL resulted in selective location in tumors and exhibited a definite antitumor effect on S180 osteosarcoma. In addition, when a low dosage of Adriamycin (5 mg kg(-1)) or B. longum-pBV22210-endostatin was combined, the antitumor effect was significantly enhanced. The successful inhibition of S180 tumor growth suggested a stable vector in B. longum for transporting anticancer genes combined with low-dose chemotherapeutic drugs or other target genes is a promising approach in cancer gene therapy.
Collapse
Affiliation(s)
- B Hu
- Department of Biological Science and Technology and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Shkoporov AN, Efimov BA, Khokhlova EV, Kafarskaia LI, Smeianov VV. Production of human basic fibroblast growth factor (FGF-2) in Bifidobacterium breve using a series of novel expression/secretion vectors. Biotechnol Lett 2008; 30:1983-8. [PMID: 18575808 DOI: 10.1007/s10529-008-9772-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 06/04/2008] [Accepted: 06/06/2008] [Indexed: 11/27/2022]
Abstract
Four E. coli-Bifidobacterium shuttle vectors were constructed using Bifidobacterium plasmids, pB44 and pB80. The vectors carry two bifidobacterial promoters, a signal peptide-encoding sequence, sec2, of Bifidobacterium breve, and a transcriptional terminator from hup gene of Bifidobacterium longum. Functionality of the constructs were tested using human FGF-2 gene. The expression of FGF-2 was detected by Western blotting in B. breve transformed with three of the vectors. The highest amount of FGF-2 was produced upon transformation with pESH86, which is a pB80-based plasmid carrying FGF-2 under control of a hup promoter (Phup). Similarly, the level of FGF-2 mRNA transcribed from pESH86 was approximately threefold higher, 882 +/- 70 AU (arbitrary units), when compared to those transcribed from pB44-based pESH46 (Phup) (289 +/- 65 AU) and pESH47 (Pgap) (282 +/- 37 AU). These results suggest the vectors have the potential for production of exported fusion proteins in bifidobacteria and the expression levels can be regulated through the employment of different bifidobacterial promoters and/or replicons.
Collapse
Affiliation(s)
- A N Shkoporov
- Department of Microbiology and Virology, Russian State Medical University, Moscow, Russian Federation
| | | | | | | | | |
Collapse
|