1
|
Barruetabeña N, Alonso-Lerma B, Galera-Prat A, Joudeh N, Barandiaran L, Aldazabal L, Arbulu M, Alcalde M, De Sancho D, Gavira JA, Carrion-Vazquez M, Perez-Jimenez R. Resurrection of efficient Precambrian endoglucanases for lignocellulosic biomass hydrolysis. Commun Chem 2019. [DOI: 10.1038/s42004-019-0176-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
2
|
Growth and expression of relevant metabolic genes of Clostridium thermocellum cultured on lignocellulosic residues. ACTA ACUST UNITED AC 2017; 44:825-834. [DOI: 10.1007/s10295-017-1915-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 01/29/2017] [Indexed: 12/31/2022]
Abstract
Abstract
The plant cell wall is a source of fermentable sugars in second-generation bioethanol production. However, cellulosic biomass hydrolysis remains an obstacle to bioethanol production in an efficient and low-cost process. Clostridium thermocellum has been studied as a model organism able to produce enzymatic blends that efficiently degrade lignocellulosic biomass, and also as a fermentative microorganism in a consolidated process for the conversion of lignocellulose to bioethanol. In this study, a C. thermocellum strain (designated B8) isolated from goat rumen was characterized for its ability to grow on sugarcane straw and cotton waste, and to produce cellulosomes. We also evaluated C. thermocellum gene expression control in the presence of complex lignocellulosic biomasses. This isolate is capable of growing in the presence of microcrystalline cellulose, sugarcane straw and cotton waste as carbon sources, producing free enzymes and residual substrate-bound proteins (RSBP). The highest growth rate and cellulase/xylanase production were detected at pH 7.0 and 60 °C, after 48 h. Moreover, this strain showed different expression levels of transcripts encoding cellulosomal proteins and proteins with a role in fermentation and catabolic repression.
Collapse
|
3
|
Barbosa O, Ortiz C, Berenguer-Murcia Á, Torres R, Rodrigues RC, Fernandez-Lafuente R. Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts. Biotechnol Adv 2015; 33:435-56. [DOI: 10.1016/j.biotechadv.2015.03.006] [Citation(s) in RCA: 481] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 01/06/2023]
|
4
|
|
5
|
Torto-Alalibo T, Purwantini E, Lomax J, Setubal JC, Mukhopadhyay B, Tyler BM. Genetic resources for advanced biofuel production described with the Gene Ontology. Front Microbiol 2014; 5:528. [PMID: 25346727 PMCID: PMC4193338 DOI: 10.3389/fmicb.2014.00528] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/22/2014] [Indexed: 12/12/2022] Open
Abstract
Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary. The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology () project is extending the GO to include new terms to describe microbial processes of interest to bioenergy production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. Here we review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.
Collapse
Affiliation(s)
- Trudy Torto-Alalibo
- Department of Biochemistry, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| | - Endang Purwantini
- Department of Biochemistry, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| | - Jane Lomax
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome CampusCambridge, UK
| | - João C. Setubal
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão Paulo, Brazil
| | - Biswarup Mukhopadhyay
- Department of Biochemistry, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
- Department of Biological Sciences, Oregon State UniversityCorvallis, OR, USA
| | - Brett M. Tyler
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
- Center for Genome Research and Biocomputing, Oregon State UniversityCorvallis, OR, USA
| |
Collapse
|
6
|
Costa M, Fernandes VO, Ribeiro T, Serrano L, Cardoso V, Santos H, Lordelo M, Ferreira LMA, Fontes CMGA. Construction of GH16 β-glucanase mini-cellulosomes to improve the nutritive value of barley-based diets for broilers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:7496-7506. [PMID: 25010714 DOI: 10.1021/jf502157y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Anaerobic cellulolytic bacteria organize a comprehensive range of cellulases and hemicellulases in high molecular weight multienzyme complexes termed cellulosomes. Integration of cellulosomal components occurs via highly ordered protein-protein interactions between cohesins and dockerins. This paper reports the production of mini-cellulosomes containing one (GH16-1C) or three (GH16-3C) copies of Clostridium thermocellum glucanase 16A (CtGlc16A). Barley β-1,3-1,4-glucans are known to be antinutritive for monogastric animals, particularly for poultry. GH16-1C and GH16-3C were used to supplement barley-based diets for broilers. The data revealed that the two mini-cellulosomes effectively improved the nutritive value of barley-based diets for broilers. Analysis of mini-cellulosome molecular integrity revealed that linker sequences separating protein domains in scaffoldins and cellulosomal catalytic units are highly susceptible to proteolytic attack in vivo. The data suggest that linker protection could result in further improvements in enzyme efficacy to improve the nutritive value of barley-based diets for monogastric animals.
Collapse
Affiliation(s)
- Mónica Costa
- CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa , Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wu X, Wu J, Luo Y, Bragg J, Anderson O, Vogel J, Gu YQ. Phylogenetic, Molecular, and Biochemical Characterization of Caffeic Acid o-Methyltransferase Gene Family in Brachypodium distachyon. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2013; 2013:423189. [PMID: 23431288 PMCID: PMC3562662 DOI: 10.1155/2013/423189] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/03/2012] [Accepted: 12/07/2012] [Indexed: 05/02/2023]
Abstract
Caffeic acid o-methyltransferase (COMT) is one of the important enzymes controlling lignin monomer production in plant cell wall synthesis. Analysis of the genome sequence of the new grass model Brachypodium distachyon identified four COMT gene homologs, designated as BdCOMT1, BdCOMT2, BdCOMT3, and BdCOMT4. Phylogenetic analysis suggested that they belong to the COMT gene family, whereas syntenic analysis through comparisons with rice and sorghum revealed that BdCOMT4 on Chromosome 3 is the orthologous copy of the COMT genes well characterized in other grass species. The other three COMT genes are unique to Brachypodium since orthologous copies are not found in the collinear regions of rice and sorghum genomes. Expression studies indicated that all four Brachypodium COMT genes are transcribed but with distinct patterns of tissue specificity. Full-length cDNAs were cloned in frame into the pQE-T7 expression vector for the purification of recombinant Brachypodium COMT proteins. Biochemical characterization of enzyme activity and substrate specificity showed that BdCOMT4 has significant effect on a broad range of substrates with the highest preference for caffeic acid. The other three COMTs had low or no effect on these substrates, suggesting that a diversified evolution occurred on these duplicate genes that not only impacted their pattern of expression, but also altered their biochemical properties.
Collapse
Affiliation(s)
- Xianting Wu
- Western Regional Research Center, USDA-ARS, 800 Buchanan Street, Albany, CA 94710, USA
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Jiajie Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Avenue, Tai'an, Shandong 271018, China
| | - Yangfan Luo
- Western Regional Research Center, USDA-ARS, 800 Buchanan Street, Albany, CA 94710, USA
| | - Jennifer Bragg
- Western Regional Research Center, USDA-ARS, 800 Buchanan Street, Albany, CA 94710, USA
| | - Olin Anderson
- Western Regional Research Center, USDA-ARS, 800 Buchanan Street, Albany, CA 94710, USA
| | - John Vogel
- Western Regional Research Center, USDA-ARS, 800 Buchanan Street, Albany, CA 94710, USA
| | - Yong Q. Gu
- Western Regional Research Center, USDA-ARS, 800 Buchanan Street, Albany, CA 94710, USA
- *Yong Q. Gu:
| |
Collapse
|
8
|
Improved production of L-threonine in Escherichia coli by use of a DNA scaffold system. Appl Environ Microbiol 2012; 79:774-82. [PMID: 23160128 DOI: 10.1128/aem.02578-12] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite numerous approaches for the development of l-threonine-producing strains, strain development is still hampered by the intrinsic inefficiency of metabolic reactions caused by simple diffusion and random collisions of enzymes and metabolites. A scaffold system, which can promote the proximity of metabolic enzymes and increase the local concentration of intermediates, was reported to be one of the most promising solutions. Here, we report an improvement in l-threonine production in Escherichia coli using a DNA scaffold system, in which a zinc finger protein serves as an adapter for the site-specific binding of each enzyme involved in l-threonine production to a precisely ordered location on a DNA double helix to increase the proximity of enzymes and the local concentration of metabolites to maximize production. The optimized DNA scaffold system for l-threonine production significantly increased the efficiency of the threonine biosynthetic pathway in E. coli, substantially reducing the production time for l-threonine (by over 50%). In addition, this DNA scaffold system enhanced the growth rate of the host strain by reducing the intracellular concentration of toxic intermediates, such as homoserine. Our DNA scaffold system can be used as a platform technology for the construction and optimization of artificial metabolic pathways as well as for the production of many useful biomaterials.
Collapse
|
9
|
López-Gallego F, Acebrón I, Mancheño JM, Raja S, Lillo MP, Guisán Seijas JM. Directed, strong, and reversible immobilization of proteins tagged with a β-trefoil lectin domain: a simple method to immobilize biomolecules on plain agarose matrixes. Bioconjug Chem 2012; 23:565-73. [PMID: 22372708 DOI: 10.1021/bc2006237] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A highly stable lipase from Geobacillus thermocatenolatus (BTL2) and the enhanced green fluorescent protein from Aquorea victoria (EGFP) were recombinantly produced N-terminally tagged to the lectin domain of the hemolytic pore-forming toxin LSLa from the mushroom Laetiporus sulphureus . Such a domain (LSL(150)), recently described as a novel fusion tag, is based on a β-trefoil scaffold with two operative binding sites for galactose or galactose-containing derivatives. The fusion proteins herein analyzed have enabled us to characterize the binding mode of LSL(150) to polymeric and solid substrates such as agarose beads. The lectin-fusion proteins are able to be quantitatively bound to both cross-linked and non-cross-linked agarose matrixes in a very rapid manner, resulting in a surprisingly dynamic protein distribution inside the porous beads that evolves from heterogeneous to homogeneous along the postimmobilization time. Such dynamic distribution can be related to the reversible nature of the LSL(150)-agarose interaction. Furthermore, this latter interaction is temperature dependent since it is 4-fold stronger when the immobilization takes place at 25 °C than when it does at 4 °C. The strongest lectin-agarose interaction is also quite stable under a survey of different conditions such as high temperatures (up to 60 °C) or high organic solvent concentrations (up to 60% of acetonitrile). Notably, the use of cross-linked agarose would endow the system with more robustness due to its better mechanical properties compared to the noncross-linked one. The stability of the LSL(150)-agarose interaction would prevent protein leaching during the operation process unless high pH media are used. In summary, we believe that the LSL(150) lectin domain exhibits interesting structural features as an immobilization domain that makes it suitable to reversibly immobilize industrially relevant enzymes in very simple carriers as agarose.
Collapse
Affiliation(s)
- Fernando López-Gallego
- Departamento de Biocatálisis, Instituto de Catálisis, CSIC, Campus UAM, Cantoblanco 28049, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Whitaker WR, Dueber JE. Metabolic Pathway Flux Enhancement by Synthetic Protein Scaffolding. Methods Enzymol 2011; 497:447-68. [DOI: 10.1016/b978-0-12-385075-1.00019-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
12
|
Sugano Y, Vestergaard MC, Saito M, Tamiya E. A carbon nanotube structured biomimetic catalyst for polysaccharide degradation. Chem Commun (Camb) 2011; 47:7176-8. [DOI: 10.1039/c1cc10927h] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Abstract
Bacteria construct elaborate nanostructures, obtain nutrients and energy from diverse sources, synthesize complex molecules, and implement signal processing to react to their environment. These complex phenotypes require the coordinated action of multiple genes, which are often encoded in a contiguous region of the genome, referred to as a gene cluster. Gene clusters sometimes contain all of the genes necessary and sufficient for a particular function. As an evolutionary mechanism, gene clusters facilitate the horizontal transfer of the complete function between species. Here, we review recent work on a number of clusters whose functions are relevant to biotechnology. Engineering these clusters has been hindered by their regulatory complexity, the need to balance the expression of many genes, and a lack of tools to design and manipulate DNA at this scale. Advances in synthetic biology will enable the large-scale bottom-up engineering of the clusters to optimize their functions, wake up cryptic clusters, or to transfer them between organisms. Understanding and manipulating gene clusters will move towards an era of genome engineering, where multiple functions can be "mixed-and-matched" to create a designer organism.
Collapse
Affiliation(s)
- Michael Fischbach
- Department of Bioengineering and Therapeutic Sciences, University of California – San Francisco, MC 2530, Room 308C, 1700 4 Street, (415) 514-9435
| | - Christopher A. Voigt
- Department of Pharmaceutical Chemistry, University of California – San Francisco, MC 2540, Room 408C, 1700 4 Street, San Francisco, CA 94158, (415) 502-7050
| |
Collapse
|
14
|
Isolation and characterization of Shigella flexneri G3, capable of effective cellulosic saccharification under mesophilic conditions. Appl Environ Microbiol 2010; 77:517-23. [PMID: 21097577 DOI: 10.1128/aem.01230-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel Shigella strain (Shigella flexneri G3) showing high cellulolytic activity under mesophilic, anaerobic conditions was isolated and characterized. The bacterium is Gram negative, short rod shaped, and nonmotile and displays effective production of glucose, cellobiose, and other oligosaccharides from cellulose (Avicel PH-101) under optimal conditions (40°C and pH 6.5). Approximately 75% of the cellulose was hydrolyzed in modified ATCC 1191 medium containing 0.3% cellulose, and the oligosaccharide production yield and specific production rate reached 375 mg g Avicel(-1) and 6.25 mg g Avicel(-1) h(-1), respectively, after a 60-hour incubation. To our knowledge, this represents the highest oligosaccharide yield and specific rate from cellulose for mesophilic bacterial monocultures reported so far. The results demonstrate that S. flexneri G3 is capable of rapid conversion of cellulose to oligosaccharides, with potential biofuel applications under mesophilic conditions.
Collapse
|
15
|
Demishtein A, Karpol A, Barak Y, Lamed R, Bayer EA. Characterization of a dockerin-based affinity tag: application for purification of a broad variety of target proteins. J Mol Recognit 2010; 23:525-35. [PMID: 21038354 DOI: 10.1002/jmr.1029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Cellulose, a major component of plant matter, is degraded by a cell surface multiprotein complex called the cellulosome produced by several anaerobic bacteria. This complex coordinates the assembly of different glycoside hydrolases, via a high-affinity Ca(2+)-dependent interaction between the enzyme-borne dockerin and the scaffoldin-borne cohesin modules. In this study, we characterized a new protein affinity tag, ΔDoc, a truncated version (48 residues) of the Clostridium thermocellum Cel48S dockerin. The truncated dockerin tag has a binding affinity (K(A)) of 7.7 × 10(8)M(-1), calculated by a competitive enzyme-linked assay system. In order to examine whether the tag can be used for general application in affinity chromatography, it was fused to a range of target proteins, including Aequorea victoria green fluorescent protein (GFP), C. thermocellum β-glucosidase, Escherichia coli thioesterase/protease I (TEP1), and the antibody-binding ZZ-domain from Staphylococcus aureus protein A. The results of this study significantly extend initial studies performed using the Geobacillus stearothermophilus xylanase T-6 as a model system. In addition, the enzymatic activity of a C. thermocellum β-glucosidase, purified using this approach, was tested and found to be similar to that of a β-glucosidase preparation (without the ΔDoc tag) purified using the standard His-tag. The truncated dockerin derivative functioned as an effective affinity tag through specific interaction with a cognate cohesin, and highly purified target proteins were obtained in a single step directly from crude cell extracts. The relatively inexpensive beaded cellulose-based affinity column was reusable and maintained high capacity after each cycle. This study demonstrates that deletion into the first Ca(2+)-binding loop of the dockerin module results in an efficient and robust affinity tag that can be generally applied for protein purification.
Collapse
Affiliation(s)
- Alik Demishtein
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
16
|
Protein engineering for bioenergy and biomass-based chemicals. Curr Opin Struct Biol 2010; 20:527-32. [DOI: 10.1016/j.sbi.2010.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Accepted: 06/02/2010] [Indexed: 11/18/2022]
|
17
|
Vazana Y, Moraïs S, Barak Y, Lamed R, Bayer EA. Interplay between Clostridium thermocellum family 48 and family 9 cellulases in cellulosomal versus noncellulosomal states. Appl Environ Microbiol 2010; 76:3236-43. [PMID: 20348303 PMCID: PMC2869131 DOI: 10.1128/aem.00009-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Accepted: 03/16/2010] [Indexed: 11/20/2022] Open
Abstract
The anaerobic, thermophilic cellulolytic bacterium Clostridium thermocellum is known for its elaborate cellulosome complex, but it also produces a separate free cellulase system. Among the free enzymes, the noncellulosomal enzyme Cel9I is a processive endoglucanase whose sequence and architecture are very similar to those of the cellulosomal enzyme Cel9R; likewise, the noncellulosomal exoglucanase Cel48Y is analogous to the principal cellulosomal enzyme Cel48S. In this study we used the designer cellulosome approach to examine the interplay of prominent cellulosomal and noncellulosomal cellulases from C. thermocellum. Toward this end, we converted the cellulosomal enzymes to noncellulosomal chimeras by swapping the dockerin module of the cellulosomal enzymes with a carbohydrate-binding module from the free enzyme analogues and vice versa. This enabled us to study the importance of the targeting effect of the free enzymes due to their carbohydrate-binding module and the proximity effect for cellulases on the designer cellulosome. C. thermocellum is the only cellulosome-producing bacterium known to express two different glycoside hydrolase family 48 enzymes and thus the only bacterial system that can currently be used for such studies. The different activities with crystalline cellulose were examined, and the results demonstrated that the individual chimeric cellulases were essentially equivalent to the corresponding wild-type analogues. The wild-type cellulases displayed a synergism of about 1.5-fold; the cellulosomal pair acted synergistically when they were converted into free enzymes, whereas the free enzymes acted synergistically mainly in the wild-type state. The targeting effect was found to be the major factor responsible for the elevated activity observed for these specific enzyme combinations, whereas the proximity effect appeared to play a negligible role.
Collapse
Affiliation(s)
- Yael Vazana
- Department of Biological Chemistry, Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel, Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Sarah Moraïs
- Department of Biological Chemistry, Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel, Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Yoav Barak
- Department of Biological Chemistry, Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel, Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Raphael Lamed
- Department of Biological Chemistry, Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel, Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Edward A. Bayer
- Department of Biological Chemistry, Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel, Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
18
|
Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Environ Microbiol 2009; 76:1251-60. [PMID: 20023102 DOI: 10.1128/aem.01687-09] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By combining cellulase production, cellulose hydrolysis, and sugar fermentation into a single step, consolidated bioprocessing (CBP) represents a promising technology for biofuel production. Here we report engineering of Saccharomyces cerevisiae strains displaying a series of uni-, bi-, and trifunctional minicellulosomes. These minicellulosomes consist of (i) a miniscaffoldin containing a cellulose-binding domain and three cohesin modules, which was tethered to the cell surface through the yeast a-agglutinin adhesion receptor, and (ii) up to three types of cellulases, an endoglucanase, a cellobiohydrolase, and a beta-glucosidase, each bearing a C-terminal dockerin. Cell surface assembly of the minicellulosomes was dependent on expression of the miniscaffoldin, indicating that formation of the complex was dictated by the high-affinity interactions between cohesins and dockerins. Compared to the unifunctional and bifunctional minicellulosomes, the quaternary trifunctional complexes showed enhanced enzyme-enzyme synergy and enzyme proximity synergy. More importantly, surface display of the trifunctional minicellulosomes gave yeast cells the ability to simultaneously break down and ferment phosphoric acid-swollen cellulose to ethanol with a titer of approximately 1.8 g/liter. To our knowledge, this is the first report of a recombinant yeast strain capable of producing cell-associated trifunctional minicellulosomes. The strain reported here represents a useful engineering platform for developing CBP-enabling microorganisms and elucidating principles of cellulosome construction and mode of action.
Collapse
|