1
|
Maleki R, Rahimpour A, Rajabibazl M. Construction and evaluation of wild and mutant ofatumumab scFvs against the human CD20 antigen. Prep Biochem Biotechnol 2023; 53:239-246. [PMID: 35579623 DOI: 10.1080/10826068.2022.2073598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Several monoclonal antibodies targeting the CD20 have been produced and Ofatumumab is a case in point. Although whole antibodies target cancer cells effectively, their applications are restricted in some ways. Single-chain fragment variable antibodies, rather than employing the entire structure of antibodies, have proven a practical approach for creating completely functional antigen-binding fragments. In current research, the DNA coding sequence of VL and VH of the wild and mutant forms of ofatumumab were joined with a flexible linker (GGGGS)3 separately. Using the E. coli BL21 (DE3) expression system, the VL-linker-VH genes were cloned into the pET-28 a (+), and the associated recombinant proteins were produced. Purified and refolded scFvs (scFv-C and scFv-V3) represented a concentration of around 0.7 mg/ml from 1 L of initial E. coli culture with a molecular weight of about 27 kDa. Affinity measurement disclosed anti-CD20 scFv-V3 possesses a higher affinity constant compared to anti-CD20 scFv-C. The recombinant scFvs exclusively attach to Raji cells but not to Jurkat cells, according to a cell-ELISA analysis. The MTT test signified anti-CD20 scFvs could affect cell viability in Raji cells but had no impact on Jurkat cells and also, Raji cells viability was affected more significantly by anti-CD20 scFv-V3.
Collapse
Affiliation(s)
- Reza Maleki
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Rahimpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Huang Z, Yu C, Yu L, Shu H, Zhu X. The Roles of FHL3 in Cancer. Front Oncol 2022; 12:887828. [PMID: 35686099 PMCID: PMC9171237 DOI: 10.3389/fonc.2022.887828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/18/2022] [Indexed: 12/19/2022] Open
Abstract
The four and a half LIM domain protein 3, also named the LIM-protein FHL3, belongs to the LIM-only family. Based on the special structure of LIM-only proteins, FHL3 can perform significant functions in muscle proliferation and cardiovascular diseases by regulating cell growth and signal transduction. In recent years, there has been increasing evidence of a relation between FHLs and tumor biology, since FHL3 is often overexpressed or downregulated in different cancers. On the one hand, FHL3 can function as a tumor suppressor and influence the expression of downstream genes. On the other hand, FHL3 can also play a role as an oncoprotein in some cancers to promote tumor progression via phosphorylation. Thus, FHL3 is proposed to have a dual effect on cancer progression, reflecting its complex roles in cancer. This review focuses on the roles of FHL3 in cancer progression and discusses the interaction of FHL3 with other proteins and transcription factors. Finally, the clinical significance of FHL3 for the treatment of cancers is discussed.
Collapse
Affiliation(s)
- Zhenjun Huang
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Chengpeng Yu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liqing Yu
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Hongxin Shu
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Xianhua Zhu
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Expression and purification of the transcription factor StMsn2 from Setosphaeria turcica in Escherichia coli. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
4
|
Eyvazi S, Kazemi B, Bandehpour M, Dastmalchi S. Identification of a novel single chain fragment variable antibody targeting CD24-expressing cancer cells. Immunol Lett 2017; 190:240-246. [DOI: 10.1016/j.imlet.2017.08.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/29/2017] [Accepted: 08/28/2017] [Indexed: 02/06/2023]
|
5
|
Alizadeh AA, Hamzeh-Mivehroud M, Dastmalchi S. Production and Purification of a Novel Anti-TNF-α Single Chain Fragment Variable Antibody. Adv Pharm Bull 2015; 5:667-72. [PMID: 26793614 DOI: 10.15171/apb.2015.091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 10/31/2015] [Accepted: 11/01/2015] [Indexed: 01/05/2023] Open
Abstract
PURPOSE TNF-α is an inflammatory cytokine with a key role in initiation of inflammatory responses. Anti-TNF-α antibodies are being used in clinic for the purpose of diagnosis and treatment due to their high specificity. The objective of the current study was to express and purify an anti-TNF-α scFv antibody identified by phage display technology. METHODS The DNA coding sequence of the identified scFv was cloned into pET28a vector and the corresponding protein was expressed as 6×His tagged using E.coli BL21 (DE3) pLysS expression system followed by affinity purification on Ni-Sepharose affinity column. RESULTS The J44 scFv antibody was cloned into the expression vector and successfully expressed and purified. The purity of the scFv fraction was confirmed using SDS-PAGE analysis. Western blotting technique was used to detect expression of 6×His tagged protein. CONCLUSION In the current study an anti-TNF-α scFv antibody was successfully expressed in bacterial expression system and purified on affinity column. The purified protein can be used in different in vitro and in vivo experiments in order to elucidate its functionality.
Collapse
Affiliation(s)
- Ali Akbar Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. ; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. ; Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran. ; School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hamzeh-Mivehroud
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. ; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. ; School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. ; School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Cai X, Wang J, Huang X, Fu W, Xia W, Zou M, Wang Y, Wang J, Xu D. Identification and characterization of MT-1X as a novel FHL3-binding partner. PLoS One 2014; 9:e93723. [PMID: 24690879 PMCID: PMC3972135 DOI: 10.1371/journal.pone.0093723] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 03/06/2014] [Indexed: 11/20/2022] Open
Abstract
Four and a half LIM domain protein 3 (FHL3) is a member of the FHL protein family that plays roles in the regulation of cell survival, cell adhesion and signal transduction. However, the mechanism of action for FHL3 is not yet clear. The aim of present study was to identify novel binding partner of FHL3 and to explore the underlying mechanism. With the use of yeast two-hybrid screening system, FHL3 was used as the bait to screen human fetal hepatic cDNA library for interacting proteins. Methionine-1X was identified as a novel FHL3 binding partner. The interaction between FHL3 and the full length MT-1X was further confirmed by yeast two-hybrid assay, co-immunoprecipitation and GST pull-down assays. Furthermore,the result demonstrated that MT-1X knockdown promoted the FHL3-induced inhibitory effect on HepG2 cells by regulating FHL3-mediated Smad signaling and involving in the modulation the expression of G2/M phase-related proteins through interaction with FHL3. These findings suggest that functional interactions between FHL3 and MT-1X may provide some clues to the mechanisms of FHL3-regulated cell proliferation.
Collapse
Affiliation(s)
- Xin Cai
- Laboratory of Genome Engineering, Beijing Institute of Basic Medical Sciences, Beijing, PR China
| | - JinFeng Wang
- Laboratory of Genome Engineering, Beijing Institute of Basic Medical Sciences, Beijing, PR China
| | - Xin Huang
- Laboratory of Genome Engineering, Beijing Institute of Basic Medical Sciences, Beijing, PR China
| | - Wenliang Fu
- Laboratory of Genome Engineering, Beijing Institute of Basic Medical Sciences, Beijing, PR China
| | - Wenrong Xia
- Laboratory of Genome Engineering, Beijing Institute of Basic Medical Sciences, Beijing, PR China
| | - Minji Zou
- Laboratory of Genome Engineering, Beijing Institute of Basic Medical Sciences, Beijing, PR China
| | - YuanYuan Wang
- Laboratory of Genome Engineering, Beijing Institute of Basic Medical Sciences, Beijing, PR China
| | - Jiaxi Wang
- Laboratory of Genome Engineering, Beijing Institute of Basic Medical Sciences, Beijing, PR China
| | - Donggang Xu
- Laboratory of Genome Engineering, Beijing Institute of Basic Medical Sciences, Beijing, PR China
- * E-mail:
| |
Collapse
|
7
|
Xia W, Fu W, Cai L, Kong H, Cai X, Liu J, Wang Y, Zou M, Xu D. Identification and characterization of FHL3 as a novel angiogenin-binding partner. Gene 2012; 504:233-7. [PMID: 22633874 DOI: 10.1016/j.gene.2012.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/02/2012] [Accepted: 05/10/2012] [Indexed: 12/14/2022]
Abstract
Angiogenin (Ang) is known to induce cell proliferation and inhibit apoptosis by cellular signaling pathways and by direct nuclear functions of Ang, but the mechanism of action for Ang is not yet clear. The aim of present study was to identify novel binding partner of Ang and to explore the underlying mechanism. With the use of yeast two-hybrid screening system, Ang was used as the bait to screen human fetal hepatic cDNA library for interacting proteins. Four and a half LIM domains 3 (FHL3) was identified as a novel Ang binding partner. The interaction between Ang and the full length FHL3 was further confirmed by yeast two-hybrid assay, co-immunoprecipitation and GST pull-down assays. Furthermore, FHL3 was required for Ang-mediated HeLa cell proliferation and nuclear translocation of Ang. These findings suggest that the interaction between Ang and FHL3 may provide some clues to the mechanisms of Ang-regulated cell growth and apoptosis.
Collapse
Affiliation(s)
- Wenrong Xia
- Laboratory of Genome Engineering, Beijing Institute of Basic Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Yang T, Yang L, Chai W, Li R, Xie J, Niu B. A strategy for high-level expression of a single-chain variable fragment against TNFα by subcloning antibody variable regions from the phage display vector pCANTAB 5E into pBV220. Protein Expr Purif 2011; 76:109-14. [DOI: 10.1016/j.pep.2010.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 10/08/2010] [Accepted: 10/08/2010] [Indexed: 10/18/2022]
|