1
|
Ji W, Zhang X, Ji L, Wang K, Qiu Y. Effects of brain‑derived neurotrophic factor and neurotrophin‑3 on the neuronal differentiation of rat adipose‑derived stem cells. Mol Med Rep 2015; 12:4981-8. [PMID: 26239042 PMCID: PMC4581787 DOI: 10.3892/mmr.2015.4099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 06/23/2015] [Indexed: 01/15/2023] Open
Abstract
Tissue engineering is a promising method that may be used to treat spinal cord injury (SCI). The underlying repair mechanism of tissue engineering involves the stable secretion of neurotrophins from seed cells, which eventually differentiate into neurons; therefore, the selection of appropriate seed cells, which stably secrete neurotrophins that easily differentiate into neurons requires investigation. Adipose‑derived stem cells (ADSCs), which are adult SCs, are advantageous due to convenience sampling and easy expansion; therefore, ADSCs are currently the most popular type of seed cell. Brain‑derived neurotrophic factor (BDNF) and neurotrophin‑3 (NT‑3) possess superior properties, when compared with other neurotrophic factors, in the maintenance of neuronal survival and promotion of SC differentiation into neurons. The present study used two lentiviruses, which specifically express BDNF and NT‑3 [Lenti‑BDNF‑green fluorescent protein (GFP), Lenti‑NT‑3‑red fluorescent protein (RFP)], to transfect third‑generation ADSCs. Three types of seed cell were obtained: i) Seed cells overexpressing BDNF (ADSC/Lenti‑BDNF‑GFP); ii) seed cells overexpressing NT‑3 (ADSC/Lenti‑NT‑3‑RFP); and iii) seed cells overexpressing BDNF and NT‑3 (ADSC/Lenti‑BDNF‑GFP and NT‑3‑RFP). The transfected cells were then induced to differentiate into neurons and were divided into a further four groups: i) The BDNF and NT‑3 co‑overexpression group; ii) the BDNF overexpression group; iii) the NT‑3 overexpression group; and iv) the control group, which consisted of untransfected ADSCs. The results of the present study demonstrate that BDNF and NT‑3 expression was higher 10 days after induction, as detected by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blotting. Neuron‑specific enolase is a neuronal marker, the expression of which was highest in the BDNF and NT‑3 co‑overexpression group, followed by the BDNF overexpression group and then by the NT‑3 overexpression group. The lowest expression levels of NSE were detected in the control group, as determined by RT‑qPCR, western blotting and immunofluorescent staining. These results indicate that BDNF and NT‑3 exert a synergistic effect, which may promote the neuronal differentiation of ADSCs. The present study provides a solid theoretical foundation for future experiments regarding the use of tissue engineering technology for the treatment of SCI.
Collapse
Affiliation(s)
- Wenchen Ji
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaowei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Le Ji
- Department of Orthopedics, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Kunzheng Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yusheng Qiu
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
2
|
Human placenta mesenchymal stem cells expressing exogenous kringle1-5 protein by fiber-modified adenovirus suppress angiogenesis. Cancer Gene Ther 2014; 21:200-8. [DOI: 10.1038/cgt.2014.19] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 04/09/2014] [Accepted: 04/14/2014] [Indexed: 11/08/2022]
|
3
|
Arno A, Smith AH, Blit PH, Shehab MA, Gauglitz GG, Jeschke MG. Stem Cell Therapy: A New Treatment for Burns? Pharmaceuticals (Basel) 2011; 4:1355-1380. [PMID: 27721328 PMCID: PMC4060129 DOI: 10.3390/ph4101355] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/21/2011] [Accepted: 10/10/2011] [Indexed: 12/12/2022] Open
Abstract
Stem cell therapy has emerged as a promising new approach in almost every medicine specialty. This vast, heterogeneous family of cells are now both naturally (embryonic and adult stem cells) or artificially obtained (induced pluripotent stem cells or iPSCs) and their fates have become increasingly controllable, thanks to ongoing research in this passionate new field. We are at the beginning of a new era in medicine, with multiple applications for stem cell therapy, not only as a monotherapy, but also as an adjunct to other strategies, such as organ transplantation or standard drug treatment. Regrettably, serious preclinical concerns remain and differentiation, cell fusion, senescence and signalling crosstalk with growth factors and biomaterials are still challenges for this promising multidisciplinary therapeutic modality. Severe burns have several indications for stem cell therapy, including enhancement of wound healing, replacement of damaged skin and perfect skin regeneration - incorporating skin appendages and reduced fibrosis -, as well as systemic effects, such as inflammation, hypermetabolism and immunosuppression. The aim of this review is to describe well established characteristics of stem cells and to delineate new advances in the stem cell field, in the context of burn injury and wound healing.
Collapse
Affiliation(s)
- Anna Arno
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
- Plastic Surgery Department and Burn Unit, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Passeig de la Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Alexandra H Smith
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Patrick H Blit
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Mohammed Al Shehab
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Gerd G Gauglitz
- Department of Dermatology and Allergology, Ludwig Maximilians University, Geschwister-Scholl-Platz 1, 80539, Munich, Germany
| | - Marc G Jeschke
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada.
| |
Collapse
|
4
|
Abstract
This is a review of the growing scientific interest in the developmental plasticity and therapeutic potential of stromal cells isolated from adipose tissue. Adipose-derived stem/stromal cells (ASCs) are multipotent somatic stem cells that are abundant in fat tissue. It has been shown that ASCs can differentiate into several lineages, including adipose cells, chondrocytes, osteoblasts, neuronal cells, endothelial cells, and cardiomyocytes. At the same time, adipose tissue can be harvested by a minimally invasive procedure, which makes it a promising source of adult stem cells. Therefore, it is believed that ASCs may become an alternative to the currently available adult stem cells (e.g. bone marrow stromal cells) for potential use in regenerative medicine. In this review, we present the basic information about the field of adipose-derived stem cells and their potential use in various applications.
Collapse
|