1
|
Han J, Ma K, Li H, Su J, Zhou L, Tang J, Zhang S, Hou Y, Chen L, Liu Y, Zhu Q. All-in-one: a robust fluorescent fusion protein vector toolbox for protein localization and BiFC analyses in plants. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1098-1109. [PMID: 35179286 PMCID: PMC9129086 DOI: 10.1111/pbi.13790] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 05/20/2023]
Abstract
Fluorescent tagging protein localization (FTPL) and bimolecular fluorescence complementation (BiFC) are popular tools for in vivo analyses of the subcellular localizations of proteins and protein-protein interactions in plant cells. The efficiency of fluorescent fusion protein (FFP) expression analyses is typically impaired when the FFP genes are co-transformed on separate plasmids compared to when all are cloned and transformed in a single vector. Functional genomics applications using FFPs such as a gene family studies also often require the generation of multiple plasmids. Here, to address these needs, we developed an efficient, modular all-in-one (Aio) FFP (AioFFP) vector toolbox, including a set of fluorescently labelled organelle markers, FTPL and BiFC plasmids and associated binary vectors. This toolbox uses Gibson assembly (GA) and incorporates multiple unique nucleotide sequences (UNSs) to facilitate efficient gene cloning. In brief, this system enables convenient cloning of a target gene into various FFP vectors or the insertion of two or more target genes into the same FFP vector in a single-tube GA reaction. This system also enables integration of organelle marker genes or fluorescently fused target gene expression units into a single transient expression plasmid or binary vector. We validated the AioFFP system by testing genes encoding proteins known to be functional in FTPL and BiFC assays. In addition, we performed a high-throughput assessment of the accurate subcellular localizations of an uncharacterized rice CBSX protein subfamily. This modular UNS-guided GA-mediated AioFFP vector toolkit is cost-effective, easy to use and will promote functional genomics research in plants.
Collapse
Affiliation(s)
- Jingluan Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Kun Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Huali Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Jing Su
- Guangdong Provincial Key Laboratory of High Technology for Plant ProtectionPlant Protection Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Lian Zhou
- Rice Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Jintao Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- College of Life ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Shijuan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- College of Life ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Yuke Hou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- College of Life ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Yao‐Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life ScienceSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
2
|
Combinatorial-Hierarchical DNA Library Design Using the TeselaGen DESIGN Module with j5. Methods Mol Biol 2020. [PMID: 32809191 DOI: 10.1007/978-1-0716-0908-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Modern DNA assembly techniques are known for their potential to link multiple large DNA fragments together into even larger constructs in single pot reactions that are easier to automate and work more reliably than traditional cloning methods. The simplicity of the chemistry is in contrast to the increased work needed to design optimal reactions that maximize DNA fragment reuse, minimize cost, and organize thousands of potential chemical reactions. Here we examine available DNA assembly methods and describe through example, the construction of a complex but not atypical combinatorial and hierarchical library using protocols that are generated automatically with the assistance of modern synthetic biology software.
Collapse
|
3
|
Chen F, Yuan L, Ding S, Tian Y, Hu QN. Data-driven rational biosynthesis design: from molecules to cell factories. Brief Bioinform 2020; 21:1238-1248. [PMID: 31243440 DOI: 10.1093/bib/bbz065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/28/2019] [Accepted: 05/08/2019] [Indexed: 11/12/2022] Open
Abstract
A proliferation of chemical, reaction and enzyme databases, new computational methods and software tools for data-driven rational biosynthesis design have emerged in recent years. With the coming of the era of big data, particularly in the bio-medical field, data-driven rational biosynthesis design could potentially be useful to construct target-oriented chassis organisms. Engineering the complicated metabolic systems of chassis organisms to biosynthesize target molecules from inexpensive biomass is the main goal of cell factory design. The process of data-driven cell factory design could be divided into several parts: (1) target molecule selection; (2) metabolic reaction and pathway design; (3) prediction of novel enzymes based on protein domain and structure transformation of biosynthetic reactions; (4) construction of large-scale DNA for metabolic pathways; and (5) DNA assembly methods and visualization tools. The construction of a one-stop cell factory system could achieve automated design from the molecule level to the chassis level. In this article, we outline data-driven rational biosynthesis design steps and provide an overview of related tools in individual steps.
Collapse
Affiliation(s)
- Fu Chen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, People's Republic of China.,CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Le Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Shaozhen Ding
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yu Tian
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qian-Nan Hu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Flagg MP, Kao A, Hampton RY. Integrating after CEN Excision (ICE) Plasmids: Combining the ease of yeast recombination cloning with the stability of genomic integration. Yeast 2019; 36:593-605. [PMID: 31074531 DOI: 10.1002/yea.3400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/23/2019] [Accepted: 05/03/2019] [Indexed: 12/20/2022] Open
Abstract
Yeast recombination cloning is a straightforward and powerful method for recombining a plasmid backbone with a specific DNA fragment. However, the utility of yeast recombination cloning is limited by the requirement for the backbone to contain an CEN/ARS element, which allows for the recombined plasmids to propagate. Although yeast CEN/ARS plasmids are often suitable for further studies, we demonstrate here that they can vary considerably in copy number from cell to cell and from colony to colony. Variation in plasmid copy number can pose an unacceptable and often unacknowledged source of phenotypic variation. If expression levels are critical to experimentation, then constructs generated with yeast recombination cloning must be subcloned into integrating plasmids, a step that often abrogates the utility of recombination cloning. Accordingly, we have designed a vector that can be used for yeast recombination cloning but can be converted into the integrating version of the resulting vector without an additional subcloning. We call these "ICE" vectors, for "Integrating after CEN Excision." The ICE series was created by introducing a "rare-cutter" NotI-flanked CEN/ARS element into the multiple cloning sites of the pRS series yeast integration plasmids. Upon recovery from yeast, the CEN/ARS is excised by NotI digest and subsequently religated without need for purification or transfer to new conditions. Excision by this approach takes ~3 hr, allowing this refinement in the same time frame as standard recombination cloning.
Collapse
Affiliation(s)
- Matthew P Flagg
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California
| | - Andy Kao
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California
| | - Randolph Y Hampton
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California
| |
Collapse
|
5
|
Eriksen DT, Chao R, Zhao H. Applying Advanced DNA Assembly Methods to Generate Pathway Libraries. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Dawn T. Eriksen
- University of Illinois at Urbana-Champaign; Department of Chemical and Biomolecular Engineering; 600 South Mathews Avenue, Urbana IL 61801 USA
| | - Ran Chao
- University of Illinois at Urbana-Champaign; Department of Chemical and Biomolecular Engineering; 600 South Mathews Avenue, Urbana IL 61801 USA
| | - Huimin Zhao
- University of Illinois at Urbana-Champaign; Department of Chemical and Biomolecular Engineering; 600 South Mathews Avenue, Urbana IL 61801 USA
- University of Illinois at Urbana-Champaign; Departments of Chemistry, Biochemistry, and Bioengineering, 600 South Mathews Avenue; Urbana IL 61801 USA
| |
Collapse
|
6
|
Jin E, Wong L, Jiao Y, Engel J, Holdridge B, Xu P. Rapid evolution of regulatory element libraries for tunable transcriptional and translational control of gene expression. Synth Syst Biotechnol 2017; 2:295-301. [PMID: 29552654 PMCID: PMC5851936 DOI: 10.1016/j.synbio.2017.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/12/2017] [Accepted: 10/12/2017] [Indexed: 12/16/2022] Open
Abstract
Engineering cell factories for producing biofuels and pharmaceuticals has spurred great interests to develop rapid and efficient synthetic biology tools customized for modular pathway engineering. Along the way, combinatorial gene expression control through modification of regulatory element offered tremendous opportunity for fine-tuning gene expression and generating digital-like genetic circuits. In this report, we present an efficient evolutionary approach to build a range of regulatory control elements. The reported method allows for rapid construction of promoter, 5'UTR, terminator and trans-activating RNA libraries. Synthetic overlapping oligos with high portion of degenerate nucleotides flanking the regulatory element could be efficiently assembled to a vector expressing fluorescence reporter. This approach combines high mutation rate of the synthetic DNA with the high assembly efficiency of Gibson Mix. Our constructed library demonstrates broad range of transcriptional or translational gene expression dynamics. Specifically, both the promoter library and 5'UTR library exhibits gene expression dynamics spanning across three order of magnitude. The terminator library and trans-activating RNA library displays relatively narrowed gene expression pattern. The reported study provides a versatile toolbox for rapidly constructing a large family of prokaryotic regulatory elements. These libraries also facilitate the implementation of combinatorial pathway engineering principles and the engineering of more efficient microbial cell factory for various biomanufacturing applications.
Collapse
Affiliation(s)
- Erqing Jin
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States.,Department of Food Science and Engineering, Jinan University, 601 West Huangpu Road, Guangzhou 510632, China
| | - Lynn Wong
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - Yun Jiao
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - Jake Engel
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - Benjamin Holdridge
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - Peng Xu
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| |
Collapse
|
7
|
Abstract
Combinatorial engineering approaches are becoming increasingly popular, yet they are hindered by the lack of specialized techniques for both efficient introduction of sequence variability and assembly of numerous DNA parts, required for the construction of lengthy multigene pathways. In this contribution, we introduce a new combinatorial multigene pathway assembly scheme based on Single Strand Assembly (SSA) methods and Golden Gate Assembly, exploiting the strengths of both assembly techniques. With a minimum of intermediary steps and an accompanying set of well-characterized and ready-to-use genetic parts, the developed workflow allows effective introduction of various libraries and efficient assembly of multigene pathways. It was put to the test by optimizing the lycopene pathway as proof-of-principle. The here constructed libraries yield ample variation in lycopene production. In addition, good-performing transformants with a significantly higher lycopene production were obtained as compared to previously published reference strains. The best selected producer yielded 3-fold improvement in lycopene titers up to 448 mg lycopene/g CDW. The proposed workflow in combination with the accompanying sets of ready-to-use expression and carrier plasmids, will allow the combinatorial assembly of increasingly lengthy product pathways with minimal effort.
Collapse
Affiliation(s)
- Pieter Coussement
- Department
of Biochemical
and Microbial Technology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - David Bauwens
- Department
of Biochemical
and Microbial Technology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Jo Maertens
- Department
of Biochemical
and Microbial Technology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Marjan De Mey
- Department
of Biochemical
and Microbial Technology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| |
Collapse
|
8
|
Sun J, Alper H. Synthetic Biology: An Emerging Approach for Strain Engineering. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Jie Sun
- Department of Chemical Engineering; The University of Texas at Austin; 200 E Dean Keeton Street Stop C0400, Austin TX 78712 USA
| | - Hal Alper
- Department of Chemical Engineering; The University of Texas at Austin; 200 E Dean Keeton Street Stop C0400, Austin TX 78712 USA
| |
Collapse
|
9
|
Li S, Ding W, Zhang X, Jiang H, Bi C. Development of a modularized two-step (M2S) chromosome integration technique for integration of multiple transcription units in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:232. [PMID: 27800017 PMCID: PMC5084435 DOI: 10.1186/s13068-016-0645-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/13/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Saccharomyces cerevisiae has already been used for heterologous production of fuel chemicals and valuable natural products. The establishment of complicated heterologous biosynthetic pathways in S. cerevisiae became the research focus of Synthetic Biology and Metabolic Engineering. Thus, simple and efficient genomic integration techniques of large number of transcription units are demanded urgently. RESULTS An efficient DNA assembly and chromosomal integration method was created by combining homologous recombination (HR) in S. cerevisiae and Golden Gate DNA assembly method, designated as modularized two-step (M2S) technique. Two major assembly steps are performed consecutively to integrate multiple transcription units simultaneously. In Step 1, Modularized scaffold containing a head-to-head promoter module and a pair of terminators was assembled with two genes. Thus, two transcription units were assembled with Golden Gate method into one scaffold in one reaction. In Step 2, the two transcription units were mixed with modules of selective markers and integration sites and transformed into S. cerevisiae for assembly and integration. In both steps, universal primers were designed for identification of correct clones. Establishment of a functional β-carotene biosynthetic pathway in S. cerevisiae within 5 days demonstrated high efficiency of this method, and a 10-transcriptional-unit pathway integration illustrated the capacity of this method. CONCLUSIONS Modular design of transcription units and integration elements simplified assembly and integration procedure, and eliminated frequent designing and synthesis of DNA fragments in previous methods. Also, by assembling most parts in Step 1 in vitro, the number of DNA cassettes for homologous integration in Step 2 was significantly reduced. Thus, high assembly efficiency, high integration capacity, and low error rate were achieved.
Collapse
Affiliation(s)
- Siwei Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308 China
| | - Wentao Ding
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308 China
| | - Xueli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308 China
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308 China
| | - Changhao Bi
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308 China
| |
Collapse
|
10
|
Pereira F, Azevedo F, Parachin NS, Hahn-Hägerdal B, Gorwa-Grauslund MF, Johansson B. Yeast Pathway Kit: A Method for Metabolic Pathway Assembly with Automatically Simulated Executable Documentation. ACS Synth Biol 2016; 5:386-94. [PMID: 26916955 DOI: 10.1021/acssynbio.5b00250] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have developed the Yeast Pathway Kit (YPK) for rational and random metabolic pathway assembly in Saccharomyces cerevisiae using reusable and redistributable genetic elements. Genetic elements are cloned in a suicide vector in a rapid process that omits PCR product purification. Single-gene expression cassettes are assembled in vivo using genetic elements that are both promoters and terminators (TP). Cassettes sharing genetic elements are assembled by recombination into multigene pathways. A wide selection of prefabricated TP elements makes assembly both rapid and inexpensive. An innovative software tool automatically produces detailed self-contained executable documentation in the form of pydna code in the narrative Jupyter notebook format to facilitate planning and sharing YPK projects. A d-xylose catabolic pathway was created using YPK with four or eight genes that resulted in one of the highest growth rates reported on d-xylose (0.18 h(-1)) for recombinant S. cerevisiae without adaptation. The two-step assembly of single-gene expression cassettes into multigene pathways may improve the yield of correct pathways at the cost of adding overall complexity, which is offset by the supplied software tool.
Collapse
Affiliation(s)
- Filipa Pereira
- CBMA—Centre
of Molecular and Environmental Biology, Department
of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Flávio Azevedo
- CBMA—Centre
of Molecular and Environmental Biology, Department
of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Nadia Skorupa Parachin
- Division
of Applied Microbiology, Department of Chemistry, Lund University, SE-22100 Lund, Sweden
| | - Bärbel Hahn-Hägerdal
- Division
of Applied Microbiology, Department of Chemistry, Lund University, SE-22100 Lund, Sweden
| | - Marie F. Gorwa-Grauslund
- Division
of Applied Microbiology, Department of Chemistry, Lund University, SE-22100 Lund, Sweden
| | - Björn Johansson
- CBMA—Centre
of Molecular and Environmental Biology, Department
of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| |
Collapse
|
11
|
Hutchison CA, Chuang RY, Noskov VN, Assad-Garcia N, Deerinck TJ, Ellisman MH, Gill J, Kannan K, Karas BJ, Ma L, Pelletier JF, Qi ZQ, Richter RA, Strychalski EA, Sun L, Suzuki Y, Tsvetanova B, Wise KS, Smith HO, Glass JI, Merryman C, Gibson DG, Venter JC. Design and synthesis of a minimal bacterial genome. Science 2016; 351:aad6253. [DOI: 10.1126/science.aad6253] [Citation(s) in RCA: 838] [Impact Index Per Article: 104.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/05/2016] [Indexed: 12/17/2022]
|
12
|
Qi H, Li BZ, Zhang WQ, Liu D, Yuan YJ. Modularization of genetic elements promotes synthetic metabolic engineering. Biotechnol Adv 2015; 33:1412-9. [DOI: 10.1016/j.biotechadv.2015.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 01/12/2015] [Accepted: 04/05/2015] [Indexed: 01/24/2023]
|
13
|
Carquet M, Pompon D, Truan G. Transcription interference and ORF nature strongly affect promoter strength in a reconstituted metabolic pathway. Front Bioeng Biotechnol 2015; 3:21. [PMID: 25767795 PMCID: PMC4341558 DOI: 10.3389/fbioe.2015.00021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/12/2015] [Indexed: 11/13/2022] Open
Abstract
Fine tuning of individual enzyme expression level is necessary to alleviate metabolic imbalances in synthetic heterologous pathways. A known approach consists of choosing a suitable combination of promoters, based on their characterized strengths in model conditions. We questioned whether each step of a multiple-gene synthetic pathway could be independently tunable at the transcription level. Three open reading frames, coding for enzymes involved in a synthetic pathway, were combinatorially associated to different promoters on an episomal plasmid in Saccharomyces cerevisiae. We quantified the mRNA levels of the three genes in each strain of our generated combinatorial metabolic library. Our results evidenced that the ORF nature, position, and orientation induce strong discrepancies between the previously reported promoters' strengths and the observed ones. We conclude that, in the context of metabolic reconstruction, the strength of usual promoters can be dramatically affected by many factors. Among them, transcriptional interference and ORF nature seem to be predominant.
Collapse
Affiliation(s)
- Marie Carquet
- Université de Toulouse, INSA, UPS, INP, LISBP , Toulouse , France ; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés , Toulouse , France ; CNRS, UMR5504 , Toulouse , France
| | - Denis Pompon
- Université de Toulouse, INSA, UPS, INP, LISBP , Toulouse , France ; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés , Toulouse , France ; CNRS, UMR5504 , Toulouse , France
| | - Gilles Truan
- Université de Toulouse, INSA, UPS, INP, LISBP , Toulouse , France ; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés , Toulouse , France ; CNRS, UMR5504 , Toulouse , France
| |
Collapse
|
14
|
Torella JP, Lienert F, Boehm CR, Chen JH, Way JC, Silver PA. Unique nucleotide sequence-guided assembly of repetitive DNA parts for synthetic biology applications. Nat Protoc 2014; 9:2075-89. [PMID: 25101822 DOI: 10.1038/nprot.2014.145] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recombination-based DNA construction methods, such as Gibson assembly, have made it possible to easily and simultaneously assemble multiple DNA parts, and they hold promise for the development and optimization of metabolic pathways and functional genetic circuits. Over time, however, these pathways and circuits have become more complex, and the increasing need for standardization and insulation of genetic parts has resulted in sequence redundancies--for example, repeated terminator and insulator sequences--that complicate recombination-based assembly. We and others have recently developed DNA assembly methods, which we refer to collectively as unique nucleotide sequence (UNS)-guided assembly, in which individual DNA parts are flanked with UNSs to facilitate the ordered, recombination-based assembly of repetitive sequences. Here we present a detailed protocol for UNS-guided assembly that enables researchers to convert multiple DNA parts into sequenced, correctly assembled constructs, or into high-quality combinatorial libraries in only 2-3 d. If the DNA parts must be generated from scratch, an additional 2-5 d are necessary. This protocol requires no specialized equipment and can easily be implemented by a student with experience in basic cloning techniques.
Collapse
Affiliation(s)
- Joseph P Torella
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Florian Lienert
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian R Boehm
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jan-Hung Chen
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey C Way
- 1] Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA. [2] Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Pamela A Silver
- 1] Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA. [2] Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
15
|
In vivo evolution of metabolic pathways by homeologous recombination in mitotic cells. Metab Eng 2014; 23:123-35. [DOI: 10.1016/j.ymben.2014.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 01/27/2014] [Accepted: 02/12/2014] [Indexed: 12/29/2022]
|
16
|
Fernández-Castané A, Fehér T, Carbonell P, Pauthenier C, Faulon JL. Computer-aided design for metabolic engineering. J Biotechnol 2014; 192 Pt B:302-13. [PMID: 24704607 DOI: 10.1016/j.jbiotec.2014.03.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/18/2014] [Accepted: 03/24/2014] [Indexed: 12/20/2022]
Abstract
The development and application of biotechnology-based strategies has had a great socio-economical impact and is likely to play a crucial role in the foundation of more sustainable and efficient industrial processes. Within biotechnology, metabolic engineering aims at the directed improvement of cellular properties, often with the goal of synthesizing a target chemical compound. The use of computer-aided design (CAD) tools, along with the continuously emerging advanced genetic engineering techniques have allowed metabolic engineering to broaden and streamline the process of heterologous compound-production. In this work, we review the CAD tools available for metabolic engineering with an emphasis, on retrosynthesis methodologies. Recent advances in genetic engineering strategies for pathway implementation and optimization are also reviewed as well as a range of bionalytical tools to validate in silico predictions. A case study applying retrosynthesis is presented as an experimental verification of the output from Retropath, the first complete automated computational pipeline applicable to metabolic engineering. Applying this CAD pipeline, together with genetic reassembly and optimization of culture conditions led to improved production of the plant flavonoid pinocembrin. Coupling CAD tools with advanced genetic engineering strategies and bioprocess optimization is crucial for enhanced product yields and will be of great value for the development of non-natural products through sustainable biotechnological processes.
Collapse
Affiliation(s)
- Alfred Fernández-Castané
- Institute of Systems and Synthetic Biology, University of Evry-Val-d'Essonne, CNRS FRE3561, Genopole(®) Campus 1, Genavenir 6, 5 rue Henri Desbruères, F-91030 Evry Cedex, France.
| | - Tamás Fehér
- Institute of Systems and Synthetic Biology, University of Evry-Val-d'Essonne, CNRS FRE3561, Genopole(®) Campus 1, Genavenir 6, 5 rue Henri Desbruères, F-91030 Evry Cedex, France.
| | - Pablo Carbonell
- Institute of Systems and Synthetic Biology, University of Evry-Val-d'Essonne, CNRS FRE3561, Genopole(®) Campus 1, Genavenir 6, 5 rue Henri Desbruères, F-91030 Evry Cedex, France.
| | - Cyrille Pauthenier
- Institute of Systems and Synthetic Biology, University of Evry-Val-d'Essonne, CNRS FRE3561, Genopole(®) Campus 1, Genavenir 6, 5 rue Henri Desbruères, F-91030 Evry Cedex, France.
| | - Jean-Loup Faulon
- Institute of Systems and Synthetic Biology, University of Evry-Val-d'Essonne, CNRS FRE3561, Genopole(®) Campus 1, Genavenir 6, 5 rue Henri Desbruères, F-91030 Evry Cedex, France.
| |
Collapse
|
17
|
Abstract
Modern standardized methodologies, described in detail in the previous chapters of this book, have enabled the software-automated design of optimized DNA construction protocols. This chapter describes how to design (combinatorial) scar-less DNA assembly protocols using the web-based software j5. j5 assists biomedical and biotechnological researchers construct DNA by automating the design of optimized protocols for flanking homology sequence as well as type IIS endonuclease-mediated DNA assembly methodologies. Unlike any other software tool available today, j5 designs scar-less combinatorial DNA assembly protocols, performs a cost-benefit analysis to identify which portions of an assembly process would be less expensive to outsource to a DNA synthesis service provider, and designs hierarchical DNA assembly strategies to mitigate anticipated poor assembly junction sequence performance. Software integrated with j5 add significant value to the j5 design process through graphical user-interface enhancement and downstream liquid-handling robotic laboratory automation.
Collapse
|
18
|
Paetzold B, Carolis C, Ferrar T, Serrano L, Lluch-Senar M. In situ overlap and sequence synthesis during DNA assembly. ACS Synth Biol 2013; 2:750-5. [PMID: 24161008 PMCID: PMC3874219 DOI: 10.1021/sb400067v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Modern cloning methods are independent
from restriction enzyme
recognition sites. However, nearly all current cloning methods still
require the introduction of overlaps by PCR, which can introduce undesired
mutations. Here, we investigated whether overlaps needed for DNA assembly
can be synthesized in situ and we tested if the de novo synthesis of sequences can be simultaneously combined
with the assembly of larger double-stranded DNA fragments. We showed
in a set of 44 cloning experiments that overlaps of 20 bp needed for
DNA assembly can be synthesized in situ from single-stranded
oligonucleotides. Short sequences of 30–255 bp can be synthesized
from single-stranded oligonucleotides concurrently with DNA assembly,
and both techniques can be combined. The assembly of similar constructs
by state-of-the-art techniques would have required multiple rounds
of cloning or tedious sample preparations, whereas our approach is
a one-step reaction.
Collapse
Affiliation(s)
- Bernhard Paetzold
- EMBL-CRG
Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr.
Aiguader 88, 08003 Barcelona, Spain
| | - Carlo Carolis
- Universitat Pompeu Fabra (UPF), Dr.
Aiguader 88, 08003 Barcelona, Spain
- Biomolecular
Screening and Protein Technologies Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Tony Ferrar
- EMBL-CRG
Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr.
Aiguader 88, 08003 Barcelona, Spain
| | - Luis Serrano
- EMBL-CRG
Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr.
Aiguader 88, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Maria Lluch-Senar
- EMBL-CRG
Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr.
Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|
19
|
Li Y, Gu Q, Lin Z, Wang Z, Chen T, Zhao X. Multiplex iterative plasmid engineering for combinatorial optimization of metabolic pathways and diversification of protein coding sequences. ACS Synth Biol 2013; 2:651-61. [PMID: 24041030 DOI: 10.1021/sb400051t] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Engineering complex biological systems typically requires combinatorial optimization to achieve the desired functionality. Here, we present Multiplex Iterative Plasmid Engineering (MIPE), which is a highly efficient and customized method for combinatorial diversification of plasmid sequences. MIPE exploits ssDNA mediated λ Red recombineering for the introduction of mutations, allowing it to target several sites simultaneously and generate libraries of up to 10(7) sequences in one reaction. We also describe "restriction digestion mediated co-selection (RD CoS)", which enables MIPE to produce enhanced recombineering efficiencies with greatly simplified coselection procedures. To demonstrate this approach, we applied MIPE to fine-tune gene expression level in the 5-gene riboflavin biosynthetic pathway and successfully isolated a clone with 2.67-fold improved production in less than a week. We further demonstrated the ability of MIPE for highly multiplexed diversification of protein coding sequence by simultaneously targeting 23 codons scattered along the 750 bp sequence. We anticipate this method to benefit the optimization of diverse biological systems in synthetic biology and metabolic engineering.
Collapse
Affiliation(s)
- Yifan Li
- Key Laboratory of Systems
Bioengineering,
Ministry of Education, and Department of Biochemical Engineering,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Qun Gu
- Key Laboratory of Systems
Bioengineering,
Ministry of Education, and Department of Biochemical Engineering,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Zhenquan Lin
- Key Laboratory of Systems
Bioengineering,
Ministry of Education, and Department of Biochemical Engineering,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Zhiwen Wang
- Key Laboratory of Systems
Bioengineering,
Ministry of Education, and Department of Biochemical Engineering,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Tao Chen
- Key Laboratory of Systems
Bioengineering,
Ministry of Education, and Department of Biochemical Engineering,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Xueming Zhao
- Key Laboratory of Systems
Bioengineering,
Ministry of Education, and Department of Biochemical Engineering,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| |
Collapse
|
20
|
Cobb RE, Ning JC, Zhao H. DNA assembly techniques for next-generation combinatorial biosynthesis of natural products. J Ind Microbiol Biotechnol 2013; 41:469-77. [PMID: 24127070 DOI: 10.1007/s10295-013-1358-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/25/2013] [Indexed: 12/30/2022]
Abstract
Natural product scaffolds remain important leads for pharmaceutical development. However, transforming a natural product into a drug entity often requires derivatization to enhance the compound's therapeutic properties. A powerful method by which to perform this derivatization is combinatorial biosynthesis, the manipulation of the genes in the corresponding pathway to divert synthesis towards novel derivatives. While these manipulations have traditionally been carried out via restriction digestion/ligation-based cloning, the shortcomings of such techniques limit their throughput and thus the scope of corresponding combinatorial biosynthesis experiments. In the burgeoning field of synthetic biology, the demand for facile DNA assembly techniques has promoted the development of a host of novel DNA assembly strategies. Here we describe the advantages of these recently developed tools for rapid, efficient synthesis of large DNA constructs. We also discuss their potential to facilitate the simultaneous assembly of complete libraries of natural product biosynthetic pathways, ushering in the next generation of combinatorial biosynthesis.
Collapse
Affiliation(s)
- Ryan E Cobb
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | | |
Collapse
|
21
|
Torella JP, Boehm CR, Lienert F, Chen JH, Way JC, Silver PA. Rapid construction of insulated genetic circuits via synthetic sequence-guided isothermal assembly. Nucleic Acids Res 2013; 42:681-9. [PMID: 24078086 PMCID: PMC3874176 DOI: 10.1093/nar/gkt860] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In vitro recombination methods have enabled one-step construction of large DNA sequences from multiple parts. Although synthetic biological circuits can in principle be assembled in the same fashion, they typically contain repeated sequence elements such as standard promoters and terminators that interfere with homologous recombination. Here we use a computational approach to design synthetic, biologically inactive unique nucleotide sequences (UNSes) that facilitate accurate ordered assembly. Importantly, our designed UNSes make it possible to assemble parts with repeated terminator and insulator sequences, and thereby create insulated functional genetic circuits in bacteria and mammalian cells. Using UNS-guided assembly to construct repeating promoter-gene-terminator parts, we systematically varied gene expression to optimize production of a deoxychromoviridans biosynthetic pathway in Escherichia coli. We then used this system to construct complex eukaryotic AND-logic gates for genomic integration into embryonic stem cells. Construction was performed by using a standardized series of UNS-bearing BioBrick-compatible vectors, which enable modular assembly and facilitate reuse of individual parts. UNS-guided isothermal assembly is broadly applicable to the construction and optimization of genetic circuits and particularly those requiring tight insulation, such as complex biosynthetic pathways, sensors, counters and logic gates.
Collapse
Affiliation(s)
- Joseph P Torella
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA and Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
22
|
Lee ME, Aswani A, Han AS, Tomlin CJ, Dueber JE. Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay. Nucleic Acids Res 2013; 41:10668-78. [PMID: 24038353 PMCID: PMC3905865 DOI: 10.1093/nar/gkt809] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Engineered metabolic pathways often suffer from flux imbalances that can overburden the cell and accumulate intermediate metabolites, resulting in reduced product titers. One way to alleviate such imbalances is to adjust the expression levels of the constituent enzymes using a combinatorial expression library. Typically, this approach requires high-throughput assays, which are unfortunately unavailable for the vast majority of desirable target compounds. To address this, we applied regression modeling to enable expression optimization using only a small number of measurements. We characterized a set of constitutive promoters in Saccharomyces cerevisiae that spanned a wide range of expression and maintained their relative strengths irrespective of the coding sequence. We used a standardized assembly strategy to construct a combinatorial library and express for the first time in yeast the five-enzyme violacein biosynthetic pathway. We trained a regression model on a random sample comprising 3% of the total library, and then used that model to predict genotypes that would preferentially produce each of the products in this highly branched pathway. This generalizable method should prove useful in engineering new pathways for the sustainable production of small molecules.
Collapse
Affiliation(s)
- Michael E Lee
- The UC Berkeley & UCSF Graduate Program in Bioengineering, Berkeley, CA 94720, USA, Department of Bioengineering, University of California, Berkeley, CA 94720, USA, Energy Biosciences Institute, Berkeley, CA 94720, USA, Department of Industrial Engineering and Operations Research, University of California, Berkeley, CA 94720, USA and Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
23
|
Molecular tools for functional genomics in filamentous fungi: recent advances and new strategies. Biotechnol Adv 2013; 31:1562-74. [PMID: 23988676 DOI: 10.1016/j.biotechadv.2013.08.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 07/06/2013] [Accepted: 08/05/2013] [Indexed: 11/22/2022]
Abstract
Advances in genetic transformation techniques have made important contributions to molecular genetics. Various molecular tools and strategies have been developed for functional genomic analysis of filamentous fungi since the first DNA transformation was successfully achieved in Neurospora crassa in 1973. Increasing amounts of genomic data regarding filamentous fungi are continuously reported and large-scale functional studies have become common in a wide range of fungal species. In this review, various molecular tools used in filamentous fungi are compared and discussed, including methods for genetic transformation (e.g., protoplast transformation, electroporation, and microinjection), the construction of random mutant libraries (e.g., restriction enzyme mediated integration, transposon arrayed gene knockout, and Agrobacterium tumefaciens mediated transformation), and the analysis of gene function (e.g., RNA interference and transcription activator-like effector nucleases). We also focused on practical strategies that could enhance the efficiency of genetic manipulation in filamentous fungi, such as choosing a proper screening system and marker genes, assembling target-cassettes or vectors effectively, and transforming into strains that are deficient in the nonhomologous end joining pathway. In summary, we present an up-to-date review on the different molecular tools and latest strategies that have been successfully used in functional genomics in filamentous fungi.
Collapse
|
24
|
Eriksen DT, Hsieh PCH, Lynn P, Zhao H. Directed evolution of a cellobiose utilization pathway in Saccharomyces cerevisiae by simultaneously engineering multiple proteins. Microb Cell Fact 2013; 12:61. [PMID: 23802545 PMCID: PMC3702475 DOI: 10.1186/1475-2859-12-61] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 06/03/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The optimization of metabolic pathways is critical for efficient and economical production of biofuels and specialty chemicals. One such significant pathway is the cellobiose utilization pathway, identified as a promising route in biomass utilization. Here we describe the optimization of cellobiose consumption and ethanol productivity by simultaneously engineering both proteins of the pathway, the β-glucosidase (gh1-1) and the cellodextrin transporter (cdt-1), in an example of pathway engineering through directed evolution. RESULTS The improved pathway was assessed based on the strain specific growth rate on cellobiose, with the final mutant exhibiting a 47% increase over the wild-type pathway. Metabolite analysis of the engineered pathway identified a 49% increase in cellobiose consumption (1.78 to 2.65 g cellobiose/(L · h)) and a 64% increase in ethanol productivity (0.611 to 1.00 g ethanol/(L · h)). CONCLUSIONS By simultaneously engineering multiple proteins in the pathway, cellobiose utilization in S. cerevisiae was improved. This optimization can be generally applied to other metabolic pathways, provided a selection/screening method is available for the desired phenotype. The improved in vivo cellobiose utilization demonstrated here could help to decrease the in vitro enzyme load in biomass pretreatment, ultimately contributing to a reduction in the high cost of biofuel production.
Collapse
|
25
|
Ryan D, Papamichail D. Rational design of orthogonal libraries of protein coding genes. ACS Synth Biol 2013; 2:237-44. [PMID: 23654273 DOI: 10.1021/sb300086d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Array-based oligonucleotide synthesis technologies provide access to thousands of custom-designed sequence variants at low cost. Large-scale synthesis and high-throughput assays have become valuable experimental tools to study in detail the interplay between sequence and function. We have developed a methodology and corresponding algorithms for the design of diverse protein coding gene libraries, to exploit the potential of multiplex synthesis and help elucidate the effects of codon utilization and other factors in gene expression. Using our algorithm, we have computationally designed gene libraries with hundreds to thousands of orthogonal codon usage variants, uniformly exploring the design space of codon utilization, while demanding only a small fraction of the synthesis cost that would be required if these variants were synthesized independently.
Collapse
Affiliation(s)
- Daniel Ryan
- National Institute for Mathematical
and Biological Synthesis, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Dimitris Papamichail
- Computer Science Department, University of Miami, Coral Gables, Florida 33146, United
States
| |
Collapse
|
26
|
Eriksen DT, Lian J, Zhao H. Protein design for pathway engineering. J Struct Biol 2013; 185:234-42. [PMID: 23558037 DOI: 10.1016/j.jsb.2013.03.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 02/23/2013] [Accepted: 03/21/2013] [Indexed: 02/02/2023]
Abstract
Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds.
Collapse
Affiliation(s)
- Dawn T Eriksen
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Jiazhang Lian
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
27
|
Kim B, Du J, Eriksen DT, Zhao H. Combinatorial design of a highly efficient xylose-utilizing pathway in Saccharomyces cerevisiae for the production of cellulosic biofuels. Appl Environ Microbiol 2013; 79:931-41. [PMID: 23183982 PMCID: PMC3568569 DOI: 10.1128/aem.02736-12] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/20/2012] [Indexed: 11/20/2022] Open
Abstract
Balancing the flux of a heterologous metabolic pathway by tuning the expression and properties of the pathway enzymes is difficult, but it is critical to realizing the full potential of microbial biotechnology. One prominent example is the metabolic engineering of a Saccharomyces cerevisiae strain harboring a heterologous xylose-utilizing pathway for cellulosic-biofuel production, which remains a challenge even after decades of research. Here, we developed a combinatorial pathway-engineering approach to rapidly create a highly efficient xylose-utilizing pathway for ethanol production by exploring various combinations of enzyme homologues with different properties. A library of more than 8,000 xylose utilization pathways was generated using DNA assembler, followed by multitiered screening, which led to the identification of a number of strain-specific combinations of the enzymes for efficient conversion of xylose to ethanol. The balancing of metabolic flux through the xylose utilization pathway was demonstrated by a complete reversal of the major product from xylitol to ethanol with a similar yield and total by-product formation as low as 0.06 g/g xylose without compromising cell growth. The results also suggested that an optimal enzyme combination depends on not only the genotype/phenotype of the host strain, but also the sugar composition of the fermentation medium. This combinatorial approach should be applicable to any heterologous pathway and will be instrumental in the optimization of industrial production of value-added products.
Collapse
Affiliation(s)
| | - Jing Du
- Energy Biosciences Institute
- Department of Chemical and Biomolecular Engineering
| | - Dawn T. Eriksen
- Energy Biosciences Institute
- Department of Chemical and Biomolecular Engineering
| | - Huimin Zhao
- Energy Biosciences Institute
- Department of Chemical and Biomolecular Engineering
- Departments of Chemistry, Biochemistry, and Bioengineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
28
|
Xu P, Gu Q, Wang W, Wong L, Bower AG, Collins CH, Koffas MA. Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat Commun 2013; 4:1409. [DOI: 10.1038/ncomms2425] [Citation(s) in RCA: 360] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 12/21/2012] [Indexed: 01/10/2023] Open
|
29
|
|
30
|
Zotchev SB, Sekurova ON, Katz L. Genome-based bioprospecting of microbes for new therapeutics. Curr Opin Biotechnol 2012; 23:941-7. [DOI: 10.1016/j.copbio.2012.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 04/03/2012] [Accepted: 04/05/2012] [Indexed: 01/16/2023]
|
31
|
Temme K, Hill R, Segall-Shapiro TH, Moser F, Voigt CA. Modular control of multiple pathways using engineered orthogonal T7 polymerases. Nucleic Acids Res 2012; 40:8773-81. [PMID: 22743271 PMCID: PMC3458549 DOI: 10.1093/nar/gks597] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Synthetic genetic sensors and circuits enable programmable control over the timing and conditions of gene expression. They are being increasingly incorporated into the control of complex, multigene pathways and cellular functions. Here, we propose a design strategy to genetically separate the sensing/circuitry functions from the pathway to be controlled. This separation is achieved by having the output of the circuit drive the expression of a polymerase, which then activates the pathway from polymerase-specific promoters. The sensors, circuits and polymerase are encoded together on a 'controller' plasmid. Variants of T7 RNA polymerase that reduce toxicity were constructed and used as scaffolds for the construction of four orthogonal polymerases identified via part mining that bind to unique promoter sequences. This set is highly orthogonal and induces cognate promoters by 8- to 75-fold more than off-target promoters. These orthogonal polymerases enable four independent channels linking the outputs of circuits to the control of different cellular functions. As a demonstration, we constructed a controller plasmid that integrates two inducible systems, implements an AND logic operation and toggles between metabolic pathways that change Escherichia coli green (deoxychromoviridans) and red (lycopene). The advantages of this organization are that (i) the regulation of the pathway can be changed simply by introducing a different controller plasmid, (ii) transcription is orthogonal to host machinery and (iii) the pathway genes are not transcribed in the absence of a controller and are thus more easily carried without invoking evolutionary pressure.
Collapse
Affiliation(s)
- Karsten Temme
- UCB/UCSF Joint Graduate Group in Bioengineering, MC2540, Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, 1700 4th Street, San Francisco, CA 94158, USA
| | | | | | | | | |
Collapse
|
32
|
Du J, Yuan Y, Si T, Lian J, Zhao H. Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Res 2012; 40:e142. [PMID: 22718979 PMCID: PMC3467037 DOI: 10.1093/nar/gks549] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A major challenge in metabolic engineering and synthetic biology is to balance the flux of an engineered heterologous metabolic pathway to achieve high yield and productivity in a target organism. Here, we report a simple, efficient and programmable approach named ‘customized optimization of metabolic pathways by combinatorial transcriptional engineering (COMPACTER)’ for rapid tuning of gene expression in a heterologous pathway under distinct metabolic backgrounds. Specifically, a library of mutant pathways is created by de novo assembly of promoter mutants of varying strengths for each pathway gene in a target organism followed by high-throughput screening/selection. To demonstrate this approach, a single round of COMPACTER was used to generate both a xylose utilizing pathway with near-highest efficiency and a cellobiose utilizing pathway with highest efficiency that were ever reported in literature for both laboratory and industrial yeast strains. Interestingly, these engineered xylose and cellobiose utilizing pathways were all host-specific. Therefore, COMPACTER represents a powerful approach to tailor-make metabolic pathways for different strain backgrounds, which is difficult if not impossible to achieve by existing pathway engineering methods.
Collapse
Affiliation(s)
- Jing Du
- Department of Chemical and Biomolecular Engineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
Background Biological Computer Aided Design (bioCAD) assists the de novo design and selection of existing genetic components to achieve a desired biological activity, as part of an integrated design-build-test cycle. To meet the emerging needs of Synthetic Biology, bioCAD tools must address the increasing prevalence of combinatorial library design, design rule specification, and scar-less multi-part DNA assembly. Results We report the development and deployment of web-based bioCAD software, DeviceEditor, which provides a graphical design environment that mimics the intuitive visual whiteboard design process practiced in biological laboratories. The key innovations of DeviceEditor include visual combinatorial library design, direct integration with scar-less multi-part DNA assembly design automation, and a graphical user interface for the creation and modification of design specification rules. We demonstrate how biological designs are rendered on the DeviceEditor canvas, and we present effective visualizations of genetic component ordering and combinatorial variations within complex designs. Conclusions DeviceEditor liberates researchers from DNA base-pair manipulation, and enables users to create successful prototypes using standardized, functional, and visual abstractions. Open and documented software interfaces support further integration of DeviceEditor with other bioCAD tools and software platforms. DeviceEditor saves researcher time and institutional resources through correct-by-construction design, the automation of tedious tasks, design reuse, and the minimization of DNA assembly costs.
Collapse
|
34
|
Available methods for assembling expression cassettes for synthetic biology. Appl Microbiol Biotechnol 2012; 93:1853-63. [PMID: 22311648 DOI: 10.1007/s00253-012-3920-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/19/2012] [Accepted: 01/20/2012] [Indexed: 12/11/2022]
Abstract
Studies in the structural biology of the multicomponent protein complex, metabolic engineering, and synthetic biology frequently rely on the efficient over-expression of these subunits or enzymes in the same cell. As a first step, constructing the multiple expression cassettes will be a complicated and time-consuming job if the classic and conventional digestion and ligation based cloning method is used. Some more efficient methods have been developed, including (1) the employment of a multiple compatible plasmid expression system, (2) the rare-cutter-based design of vectors, (3) in vitro recombination (sequence and ligation independent cloning, the isothermally enzymatic assembly of DNA molecules in a single reaction), and (4) in vivo recombination using recombination-efficient yeast (in vivo assembly of overlapping fragments, reiterative recombination for the chromosome integration of foreign expression cassettes). In this review, we systematically introduce these available methods.
Collapse
|
35
|
Hillson NJ, Rosengarten RD, Keasling JD. j5 DNA assembly design automation software. ACS Synth Biol 2012; 1:14-21. [PMID: 23651006 DOI: 10.1021/sb2000116] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent advances in Synthetic Biology have yielded standardized and automatable DNA assembly protocols that enable a broad range of biotechnological research and development. Unfortunately, the experimental design required for modern scar-less multipart DNA assembly methods is frequently laborious, time-consuming, and error-prone. Here, we report the development and deployment of a web-based software tool, j5, which automates the design of scar-less multipart DNA assembly protocols including SLIC, Gibson, CPEC, and Golden Gate. The key innovations of the j5 design process include cost optimization, leveraging DNA synthesis when cost-effective to do so, the enforcement of design specification rules, hierarchical assembly strategies to mitigate likely assembly errors, and the instruction of manual or automated construction of scar-less combinatorial DNA libraries. Using a GFP expression testbed, we demonstrate that j5 designs can be executed with the SLIC, Gibson, or CPEC assembly methods, used to build combinatorial libraries with the Golden Gate assembly method, and applied to the preparation of linear gene deletion cassettes for E. coli. The DNA assembly design algorithms reported here are generally applicable to broad classes of DNA construction methodologies and could be implemented to supplement other DNA assembly design tools. Taken together, these innovations save researchers time and effort, reduce the frequency of user design errors and off-target assembly products, decrease research costs, and enable scar-less multipart and combinatorial DNA construction at scales unfeasible without computer-aided design.
Collapse
Affiliation(s)
- Nathan J. Hillson
- Fuels Synthesis Division, Joint BioEnergy Institute, Emeryville, California 94608,
United States
- Physical Bioscience Division, Lawrence Berkeley National Lab, 1 Cyclotron Road Mail
Stop 978R4121, Berkeley, California 94720, United States
| | - Rafael D. Rosengarten
- Fuels Synthesis Division, Joint BioEnergy Institute, Emeryville, California 94608,
United States
- Physical Bioscience Division, Lawrence Berkeley National Lab, 1 Cyclotron Road Mail
Stop 978R4121, Berkeley, California 94720, United States
| | - Jay D. Keasling
- Fuels Synthesis Division, Joint BioEnergy Institute, Emeryville, California 94608,
United States
- Physical Bioscience Division, Lawrence Berkeley National Lab, 1 Cyclotron Road Mail
Stop 978R4121, Berkeley, California 94720, United States
- Department of Chemical & Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
36
|
Reiterative Recombination for the in vivo assembly of libraries of multigene pathways. Proc Natl Acad Sci U S A 2011; 108:15135-40. [PMID: 21876185 DOI: 10.1073/pnas.1100507108] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The increasing sophistication of synthetic biology is creating a demand for robust, broadly accessible methodology for constructing multigene pathways inside of the cell. Due to the difficulty of rationally designing pathways that function as desired in vivo, there is a further need to assemble libraries of pathways in parallel, in order to facilitate the combinatorial optimization of performance. While some in vitro DNA assembly methods can theoretically make libraries of pathways, these techniques are resource intensive and inherently require additional techniques to move the DNA back into cells. All previously reported in vivo assembly techniques have been low yielding, generating only tens to hundreds of constructs at a time. Here, we develop "Reiterative Recombination," a robust method for building multigene pathways directly in the yeast chromosome. Due to its use of endonuclease-induced homologous recombination in conjunction with recyclable markers, Reiterative Recombination provides a highly efficient, technically simple strategy for sequentially assembling an indefinite number of DNA constructs at a defined locus. In this work, we describe the design and construction of the first Reiterative Recombination system in Saccharomyces cerevisiae, and we show that it can be used to assemble multigene constructs. We further demonstrate that Reiterative Recombination can construct large mock libraries of at least 10(4) biosynthetic pathways. We anticipate that our system's simplicity and high efficiency will make it a broadly accessible technology for pathway construction and render it a valuable tool for optimizing pathways in vivo.
Collapse
|