1
|
Logun M, Colonna MB, Mueller KP, Ventarapragada D, Rodier R, Tondepu C, Piscopo NJ, Das A, Chvatal S, Hayes HB, Capitini CM, Brat DJ, Kotanchek T, Edison AS, Saha K, Karumbaiah L. Label-free in vitro assays predict the potency of anti-disialoganglioside chimeric antigen receptor T-cell products. Cytotherapy 2023; 25:670-682. [PMID: 36849306 PMCID: PMC10159906 DOI: 10.1016/j.jcyt.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND AIMS Chimeric antigen receptor (CAR) T cells have demonstrated remarkable efficacy against hematological malignancies; however, they have not experienced the same success against solid tumors such as glioblastoma (GBM). There is a growing need for high-throughput functional screening platforms to measure CAR T-cell potency against solid tumor cells. METHODS We used real-time, label-free cellular impedance sensing to evaluate the potency of anti-disialoganglioside (GD2) targeting CAR T-cell products against GD2+ patient-derived GBM stem cells over a period of 2 days and 7 days in vitro. We compared CAR T products using two different modes of gene transfer: retroviral transduction and virus-free CRISPR-editing. Endpoint flow cytometry, cytokine analysis and metabolomics data were acquired and integrated to create a predictive model of CAR T-cell potency. RESULTS Results indicated faster cytolysis by virus-free CRISPR-edited CAR T cells compared with retrovirally transduced CAR T cells, accompanied by increased inflammatory cytokine release, CD8+ CAR T-cell presence in co-culture conditions and CAR T-cell infiltration into three-dimensional GBM spheroids. Computational modeling identified increased tumor necrosis factor α concentrations with decreased glutamine, lactate and formate as being most predictive of short-term (2 days) and long-term (7 days) CAR T cell potency against GBM stem cells. CONCLUSIONS These studies establish impedance sensing as a high-throughput, label-free assay for preclinical potency testing of CAR T cells against solid tumors.
Collapse
Affiliation(s)
- Meghan Logun
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA; Division of Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA
| | - Maxwell B Colonna
- Department of Biochemistry & Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Katherine P Mueller
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin USA
| | | | - Riley Rodier
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Chaitanya Tondepu
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA; Division of Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA; Edgar L. Rhodes Center for Animal and Dairy Science, College of Agriculture and Environmental Science, University of Georgia, Athens, Georgia, USA
| | - Nicole J Piscopo
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin USA
| | - Amritava Das
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | | | | | - Christian M Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin USA; University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin USA
| | - Daniel J Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois USA
| | | | - Arthur S Edison
- Department of Biochemistry & Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Krishanu Saha
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin USA; University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin USA
| | - Lohitash Karumbaiah
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA; Division of Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA; Edgar L. Rhodes Center for Animal and Dairy Science, College of Agriculture and Environmental Science, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
2
|
PC-12 Cell Line as a Neuronal Cell Model for Biosensing Applications. BIOSENSORS 2022; 12:bios12070500. [PMID: 35884303 PMCID: PMC9313070 DOI: 10.3390/bios12070500] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 12/02/2022]
Abstract
PC-12 cells have been widely used as a neuronal line study model in many biosensing devices, mainly due to the neurogenic characteristics acquired after differentiation, such as high level of secreted neurotransmitter, neuron morphology characterized by neurite outgrowth, and expression of ion and neurotransmitter receptors. For understanding the pathophysiology processes involved in brain disorders, PC-12 cell line is extensively assessed in neuroscience research, including studies on neurotoxicity, neuroprotection, or neurosecretion. Various analytical technologies have been developed to investigate physicochemical processes and the biosensors based on optical and electrochemical techniques, among others, have been at the forefront of this development. This article summarizes the application of different biosensors in PC-12 cell cultures and presents the modern approaches employed in neuronal networks biosensing.
Collapse
|
3
|
Perera TH, Lu X, Smith Callahan LA. Effect of Laminin Derived Peptides IKVAV and LRE Tethered to Hyaluronic Acid on hiPSC Derived Neural Stem Cell Morphology, Attachment and Neurite Extension. J Funct Biomater 2020; 11:E15. [PMID: 32155839 PMCID: PMC7151619 DOI: 10.3390/jfb11010015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/23/2022] Open
Abstract
Low neural tissue extracellular matrix (ECM) content has led to the understudy of its effects on neural cells and tissue. Hyaluronic acid (HA) and laminin are major neural ECM components, but direct comparisons of their cellular effects could not be located in the literature. The current study uses human-induced pluripotent stem-cell-derived neural stem cells to assess the effects of HA, laminin, and HA with laminin-derived peptides IKVAV and LRE on cellular morphology, attachment, neurite extension and ECM remodeling. Increased attachment was observed on HA with and without IKVAV and LRE compared to laminin. Cellular morphology and neurite extension were similar on all surfaces. Using a direct binding inhibitor of Cav2.2 voltage gated calcium channel activity, a known binding partner of LRE, reduced attachment on HA with and without IKVAV and LRE and altered cellular morphology on surfaces with laminin or IKVAV and LRE. HA with IKVAV and LRE reduced the fluorescent intensity of fibronectin staining, but did not alter the localization of ECM remodeling enzymes matrix metalloprotease 2 and 9 staining compared to HA. Overall, the data indicate HA, IKVAV and LRE have complementary effects on human-induced pluripotent stem-cell-derived neural stem cell behavior.
Collapse
Affiliation(s)
- T. Hiran Perera
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA; (T.H.P.); (X.L.)
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xi Lu
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA; (T.H.P.); (X.L.)
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Laura A Smith Callahan
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA; (T.H.P.); (X.L.)
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Graduate School of Biomedical Sciences, MD Anderson Cancer Center UTHealth, Houston, TX 77030, USA
| |
Collapse
|
4
|
Gamal W, Wu H, Underwood I, Jia J, Smith S, Bagnaninchi PO. Impedance-based cellular assays for regenerative medicine. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0226. [PMID: 29786561 DOI: 10.1098/rstb.2017.0226] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2018] [Indexed: 12/22/2022] Open
Abstract
Therapies based on regenerative techniques have the potential to radically improve healthcare in the coming years. As a result, there is an emerging need for non-destructive and label-free technologies to assess the quality of engineered tissues and cell-based products prior to their use in the clinic. In parallel, the emerging regenerative medicine industry that aims to produce stem cells and their progeny on a large scale will benefit from moving away from existing destructive biochemical assays towards data-driven automation and control at the industrial scale. Impedance-based cellular assays (IBCA) have emerged as an alternative approach to study stem-cell properties and cumulative studies, reviewed here, have shown their potential to monitor stem-cell renewal, differentiation and maturation. They offer a novel method to non-destructively assess and quality-control stem-cell cultures. In addition, when combined with in vitro disease models they provide complementary insights as label-free phenotypic assays. IBCA provide quantitative and very sensitive results that can easily be automated and up-scaled in multi-well format. When facing the emerging challenge of real-time monitoring of three-dimensional cell culture dielectric spectroscopy and electrical impedance tomography represent viable alternatives to two-dimensional impedance sensing.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.
Collapse
Affiliation(s)
- W Gamal
- School of Electronic Engineering, Bangor University, Bangor LL57 1UT, UK
| | - H Wu
- School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK
| | - I Underwood
- School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK
| | - J Jia
- School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK
| | - S Smith
- School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK
| | - P O Bagnaninchi
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
5
|
Xie X, Liu R, Xu Y, Wang L, Lan Z, Chen W, Liu H, Lu Y, Cheng J. In vitro hyperthermia studied in a continuous manner using electric impedance sensing. RSC Adv 2015. [DOI: 10.1039/c5ra04743a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A platform based on the ECIS technique was constructed for analyzing heat-cell interactions and further in vitro hyperthermia studies.
Collapse
Affiliation(s)
- Xinwu Xie
- Department of Biomedical Engineering
- School of Medicine
- Tsinghua University
- Beijing 100084
- China
| | - Ran Liu
- Department of Biomedical Engineering
- School of Medicine
- Tsinghua University
- Beijing 100084
- China
| | - Youchun Xu
- Department of Biomedical Engineering
- School of Medicine
- Tsinghua University
- Beijing 100084
- China
| | - Lei Wang
- National Engineering Research Center for Beijing Biochip Technology
- Beijing 102206
- China
| | - Ziyang Lan
- Department of Biomedical Engineering
- School of Medicine
- Tsinghua University
- Beijing 100084
- China
| | - Weixing Chen
- Department of Biomedical Engineering
- School of Medicine
- Tsinghua University
- Beijing 100084
- China
| | - Haoran Liu
- Department of Biomedical Engineering
- School of Medicine
- Tsinghua University
- Beijing 100084
- China
| | - Ying Lu
- Department of Biomedical Engineering
- School of Medicine
- Tsinghua University
- Beijing 100084
- China
| | - Jing Cheng
- Department of Biomedical Engineering
- School of Medicine
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|