1
|
Sari DK, Jeelani G, Ilmi H, Tumewu L, Wahyuni R, Widyawaruyanti A, Nozaki T, Hafid AF. Therapeutic potential of Indonesian plant extracts in combating malaria and protozoan neglected tropical disease. BMC Complement Med Ther 2024; 24:416. [PMID: 39695597 DOI: 10.1186/s12906-024-04717-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Neglected tropical diseases (NTDs) afflict nearly 2 billion people worldwide and are caused by various pathogens, such as bacteria, protozoa, and trypanosoma, prevalent in tropical and subtropical regions. Among the 17 NTDs recognized by the World Health Organization (WHO), protozoal infections caused by Plasmodium, Entamoeba, Leishmania, and Trypanosoma are particularly prominent and pose significant public health. Indonesia, endowed with a rich biodiversity owing to its tropical climate, harbors numerous plant species with potent biological activities that hold promise for therapeutic interventions. Hence, efforts have been directed towards exploring Indonesian plant extracts and isolated compounds for their potential in combating protozoal diseases. METHODS This study evaluated the antiprotozoal properties of 48 plant extracts sourced from the Cratoxylum, Diospyros, and Artocarpus genera. These extracts were screened using cell-based assays against Plasmodium falciparum (Pf), Entamoeba histolytica (Eh), Leishmania donovani (Ld), Trypanosoma brucei rhodesiense (Tbr), and Trypanosoma cruzi (Tc). RESULTS Extracts derived from the roots of Cratoxylum arborescens, obtained through dichloromethane extraction, exhibited significant activity against protozoa, with an IC50 value ranging from 0.1 to 8.2 µg/mL. Furthermore, cochinchinone C was identified as an active compound capable of inhibiting the growth of Pf, Eh, Ld, and Tbr, Tc trypomastigote, and Tc epimastigote with IC50 values of 5.8 µM, 6.1 µM, 0.2 µM, 0.1 µM, 0.7 µM, and 0.07 µM, respectively. Cochinchinone C is the first compound reported to exhibit activity against protozoal neglected tropical diseases, showing low cytotoxicity with a selectivity index greater than 10 when tested against carcinoma and normal cell lines. This suggests indicating its potential as a candidate for further drug development. This is the first report of cochinchinone C's activity against these protozoans. CONCLUSION These findings establish cochinchinone C as a strong candidate for antiprotozoal drug development, highlighting the untapped therapeutic potential of Indonesia's rich plant biodiversity.
Collapse
Affiliation(s)
- Defi Kartika Sari
- Center of Natural Product Medicine Research and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Ghulam Jeelani
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Hilkatul Ilmi
- Center of Natural Product Medicine Research and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Lidya Tumewu
- Center of Natural Product Medicine Research and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Ratna Wahyuni
- Center of Natural Product Medicine Research and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Department of Health, Faculty of Vocational Studies, Universitas Airlangga, Surabaya, Indonesia
| | - Aty Widyawaruyanti
- Center of Natural Product Medicine Research and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Achmad Fuad Hafid
- Center of Natural Product Medicine Research and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia.
| |
Collapse
|
2
|
Ariga K. Mechano-Nanoarchitectonics: Design and Function. SMALL METHODS 2022; 6:e2101577. [PMID: 35352500 DOI: 10.1002/smtd.202101577] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/12/2022] [Indexed: 05/27/2023]
Abstract
Mechanical stimuli have rather ambiguous and less-specific features among various physical stimuli, but most materials exhibit a certain level of responses upon mechanical inputs. Unexplored sciences remain in mechanical responding systems as one of the frontiers of materials science. Nanoarchitectonics approaches for mechanically responding materials are discussed as mechano-nanoarchitectonics in this review article. Recent approaches on molecular and materials systems with mechanical response capabilities are first exemplified with two viewpoints: i) mechanical control of supramolecular assemblies and materials and ii) mechanical control and evaluation of atom/molecular level structures. In the following sections, special attentions on interfacial environments for mechano-nanoarchitectonics are emphasized. The section entitled iii) Mechanical Control of Molecular System at Dynamic Interface describes coupling of macroscopic mechanical forces and molecular-level phenomena. Delicate mechanical forces can be applied to functional molecules embedded at the air-water interface where operation of molecular machines and tuning of molecular receptors upon macroscopic mechanical actions are discussed. Finally, the important role of the interfacial media are further extended to the control of living cells as described in the section entitled iv) Mechanical Control of Biosystems. Pioneering approaches on cell fate regulations at liquid-liquid interfaces are discussed in addition to well-known mechanobiology.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| |
Collapse
|
3
|
Shen X, Song J, Sevencan C, Leong DT, Ariga K. Bio-interactive nanoarchitectonics with two-dimensional materials and environments. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:199-224. [PMID: 35370475 PMCID: PMC8973389 DOI: 10.1080/14686996.2022.2054666] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 05/19/2023]
Abstract
Like the proposal of nanotechnology by Richard Feynman, the nanoarchitectonics concept was initially proposed by Masakazu Aono. The nanoarchitectonics strategy conceptually fuses nanotechnology with other research fields including organic chemistry, supramolecular chemistry, micro/nanofabrication, materials science, and bio-related sciences, and aims to produce functional materials from nanoscale components. In this review article, bio-interactive nanoarchitectonics and two-dimensional materials and environments are discussed as a selected topic. The account gives general examples of nanoarchitectonics of two-dimensional materials for energy storage, catalysis, and biomedical applications, followed by explanations of bio-related applications with two-dimensional materials such as two-dimensional biomimetic nanosheets, fullerene nanosheets, and two-dimensional assemblies of one-dimensional fullerene nanowhiskers (FNWs). The discussion on bio-interactive nanoarchitectonics in two-dimensional environments further extends to liquid-liquid interfaces such as fluorocarbon-medium interfaces and viscous liquid interfaces as new frontiers of two-dimensional environments for bio-related applications. Controlling differentiation of stem cells at fluidic liquid interfaces is also discussed. Finally, a conclusive section briefly summarizes features of bio-interactive nanoarchitectonics with two-dimensional materials and environments and discusses possible future perspectives.
Collapse
Affiliation(s)
- Xuechen Shen
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - Jingwen Song
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - Cansu Sevencan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Katsuhiko Ariga
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| |
Collapse
|
4
|
Peng L, Gautrot JE. Long term expansion profile of mesenchymal stromal cells at protein nanosheet-stabilised bioemulsions for next generation cell culture microcarriers. Mater Today Bio 2021; 12:100159. [PMID: 34841241 PMCID: PMC8605361 DOI: 10.1016/j.mtbio.2021.100159] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 12/27/2022] Open
Abstract
Tremendous progress in the identification, isolation and expansion of stem cells has allowed their application in regenerative medicine and tissue engineering, and their use as advanced in vitro models. As a result, stem cell manufacturing increasingly requires scale up, parallelisation and automation. However, solid substrates currently used for the culture of adherent cells are poorly adapted for such applications, owing to their difficult processing from cell products, relatively high costs and their typical reliance on difficult to recycle plastics and microplastics. In this work, we show that bioemulsions formed of microdroplets stabilised by protein nanosheets displaying strong interfacial mechanics are well-suited for the scale up of adherent stem cells such as mesenchymal stromal cells (MSCs). We demonstrate that, over multiple passages (up to passage 10), MSCs retain comparable phenotypes when cultured on such bioemulsions, solid microcarriers (Synthemax II) and classic 2D tissue culture polystyrene. Phenotyping (cell proliferation, morphometry, flow cytometry and differentiation assays) of MSCs cultured for multiple passages on these systems indicate that, although stemness is lost at late passages when cultured on these different substrates, stem cell phenotypes remained comparable between different culture conditions, at any given passage. Hence our study validates the use of bioemulsions for the long term expansion of adherent stem cells and paves the way to the design of novel 3D bioreactors based on microdroplet microcarriers.
Collapse
Affiliation(s)
- Lihui Peng
- Institute of Bioengineering and, UK.,School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
| | - Julien E Gautrot
- Institute of Bioengineering and, UK.,School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
5
|
Gadomska‐Gajadhur A, Kruk A, Wierzchowski K, Ruśkowski P, Pilarek M. Design of experiments‐based strategy for development and optimization of polylactide membranes preparation by wet inversion phase method. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Aleksandra Kruk
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy Medical University of Warsaw Warsaw Poland
| | - Kamil Wierzchowski
- Faculty of Chemical and Process Engineering Warsaw University of Technology Warsaw Poland
| | - Paweł Ruśkowski
- Faculty of Chemistry Warsaw University of Technology Warsaw Poland
| | - Maciej Pilarek
- Faculty of Chemical and Process Engineering Warsaw University of Technology Warsaw Poland
| |
Collapse
|
6
|
Bodiou V, Moutsatsou P, Post MJ. Microcarriers for Upscaling Cultured Meat Production. Front Nutr 2020; 7:10. [PMID: 32154261 PMCID: PMC7045063 DOI: 10.3389/fnut.2020.00010] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
Due to the considerable environmental impact and the controversial animal welfare associated with industrial meat production, combined with the ever-increasing global population and demand for meat products, sustainable production alternatives are indispensable. In 2013, the world's first laboratory grown hamburger made from cultured muscle cells was developed. However, coming at a price of $300.000, and being produced manually, substantial effort is still required to reach sustainable large-scale production. One of the main challenges is scalability. Microcarriers (MCs), offering a large surface/volume ratio, are the most promising candidates for upscaling muscle cell culture. However, although many MCs have been developed for cell lines and stem cells typically used in the medical field, none have been specifically developed for muscle stem cells and meat production. This paper aims to discuss the MCs' design criteria for skeletal muscle cell proliferation and subsequently for meat production based on three scenarios: (1) MCs are serving only as a temporary substrate for cell attachment and proliferation and therefore they need to be separated from the cells at some stage of the bioprocess, (2) MCs serve as a temporary substrate for cell proliferation but are degraded or dissolved during the bioprocess, and (3) MCs are embedded in the final product and therefore need to be edible. The particularities of each of these three bioprocesses will be discussed from the perspective of MCs as well as the feasibility of a one-step bioprocess. Each scenario presents advantages and drawbacks, which are discussed in detail, nevertheless the third scenario appears to be the most promising one for a production process. Indeed, using an edible material can limit or completely eliminate dissociation/degradation/separation steps and even promote organoleptic qualities when embedded in the final product. Edible microcarriers could also be used as a temporary substrate similarly to scenarios 1 and 2, which would limit the risk of non-edible residues.
Collapse
Affiliation(s)
- Vincent Bodiou
- Department of Physiology, Faculty of Health, Medicine and Life Sciences, School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
- Mosa Meat BV, Maastricht, Netherlands
- CARIM, Faculty of Health, Medicine and Life Sciences, School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Panagiota Moutsatsou
- Department of Physiology, Faculty of Health, Medicine and Life Sciences, School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
- Mosa Meat BV, Maastricht, Netherlands
| | - Mark J. Post
- Department of Physiology, Faculty of Health, Medicine and Life Sciences, School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
- Mosa Meat BV, Maastricht, Netherlands
- CARIM, Faculty of Health, Medicine and Life Sciences, School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
7
|
Recent advances in the use of microcarriers for cell cultures and their ex vivo and in vivo applications. Biotechnol Lett 2019; 42:1-10. [PMID: 31602549 DOI: 10.1007/s10529-019-02738-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022]
Abstract
Microcarriers are 100- to 300-micron support matrices that permit the growth of adherent cells in bioreactor systems. They have a larger surface area to volume ratio in comparison to single cell monolayers, enabling cost-effective cell production and expansion. Microcarriers are composed of a solid matrix that must be separated from expanded cells during downstream processing stages. The detachment method is chosen on the basis of several factors like cell type, microcarrier surface chemistry, cell confluency and degree of aggregation. The development of microcarriers with a range of physiochemical properties permit controlled cell and protein associations that hold utility for novel therapeutics. In this review, we provide an overview of the recent advances in microcarrier cell culture technology. We also discuss its significance as an ex vivo research tool and the therapeutic potential of newly designed microcarrier systems in vivo.
Collapse
|
8
|
|
9
|
Ariga K, Matsumoto M, Mori T, Shrestha LK. Materials nanoarchitectonics at two-dimensional liquid interfaces. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:1559-1587. [PMID: 31467820 PMCID: PMC6693411 DOI: 10.3762/bjnano.10.153] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 07/16/2019] [Indexed: 05/06/2023]
Abstract
Much attention has been paid to the synthesis of low-dimensional materials from small units such as functional molecules. Bottom-up approaches to create new low-dimensional materials with various functional units can be realized with the emerging concept of nanoarchitectonics. In this review article, we overview recent research progresses on materials nanoarchitectonics at two-dimensional liquid interfaces, which are dimensionally restricted media with some freedoms of molecular motion. Specific characteristics of molecular interactions and functions at liquid interfaces are briefly explained in the first parts. The following sections overview several topics on materials nanoarchitectonics at liquid interfaces, such as the preparation of two-dimensional metal-organic frameworks and covalent organic frameworks, and the fabrication of low-dimensional and specifically structured nanocarbons and their assemblies at liquid-liquid interfaces. Finally, interfacial nanoarchitectonics of biomaterials including the regulation of orientation and differentiation of living cells are explained. In the recent examples described in this review, various materials such as molecular machines, molecular receptors, block-copolymer, DNA origami, nanocarbon, phages, and stem cells were assembled at liquid interfaces by using various useful techniques. This review overviews techniques such as conventional Langmuir-Blodgett method, vortex Langmuir-Blodgett method, liquid-liquid interfacial precipitation, instructed assembly, and layer-by-layer assembly to give low-dimensional materials including nanowires, nanowhiskers, nanosheets, cubic objects, molecular patterns, supramolecular polymers, metal-organic frameworks and covalent organic frameworks. The nanoarchitecture materials can be used for various applications such as molecular recognition, sensors, photodetectors, supercapacitors, supramolecular differentiation, enzyme reactors, cell differentiation control, and hemodialysis.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Michio Matsumoto
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Taizo Mori
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Lok Kumar Shrestha
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
10
|
Tavassoli H, Alhosseini SN, Tay A, Chan PP, Weng Oh SK, Warkiani ME. Large-scale production of stem cells utilizing microcarriers: A biomaterials engineering perspective from academic research to commercialized products. Biomaterials 2018; 181:333-346. [DOI: 10.1016/j.biomaterials.2018.07.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/07/2018] [Accepted: 07/10/2018] [Indexed: 12/22/2022]
|
11
|
Minami K, Mori T, Nakanishi W, Shigi N, Nakanishi J, Hill JP, Komiyama M, Ariga K. Suppression of Myogenic Differentiation of Mammalian Cells Caused by Fluidity of a Liquid-Liquid Interface. ACS APPLIED MATERIALS & INTERFACES 2017; 9:30553-30560. [PMID: 28836758 DOI: 10.1021/acsami.7b11445] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
There is growing evidence to suggest that the prevailing physical microenvironment and mechanical stress regulate cellular functions, including adhesion, proliferation, and differentiation. Moreover, the physical microenvironment determines the stem-cell lineage depending on stiffness of the substrate relative to biological tissues as well as the stress relaxation properties of the viscoelastic substrates used for cell culture. However, there is little known regarding the biological effects of a fluid substrate, where viscoelastic stress is essentially absent. Here, we demonstrate the regulation of myogenic differentiation on fluid substrates by using a liquid-liquid interface as a scaffold. C2C12 myoblast cells were cultured using water-perfluorocarbon (PFC) interfaces as the fluid microenvironment. We found that, for controlled in vitro culture at water-PFC interfaces, expression of myogenin, myogenic regulatory factors (MRF) family gene, is remarkably attenuated even when myogenic differentiation was induced by reducing levels of growth factors, although MyoD was expressed at the usual level (MyoD up-regulates myogenin under an elastic and/or viscoelastic environment). These results strongly suggest that this unique regulation of myogenic differentiation can be attributed to the fluid microenvironment of the interfacial culture medium. This interfacial culture system represents a powerful tool for investigation of the mechanisms by which physical properties regulate cellular adhesion and proliferation as well as their differentiation. Furthermore, we successfully transferred the cells cultured at such interfaces using Langmuir-Blodgett (LB) techniques. The combination of the interfacial culture system with the LB approach enables investigation of the effects of mechanical compression on cell functions.
Collapse
Affiliation(s)
- Kosuke Minami
- International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) , 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Taizo Mori
- International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) , 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Waka Nakanishi
- International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) , 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Narumi Shigi
- International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) , 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jun Nakanishi
- International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) , 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jonathan P Hill
- International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) , 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Makoto Komiyama
- International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) , 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Katsuhiko Ariga
- International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) , 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Science, The University of Tokyo , 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
12
|
Hanga MP, Murasiewicz H, Pacek AW, Nienow AW, Coopman K, Hewitt CJ. Expansion of bone marrow-derived human mesenchymal stem/stromal cells (hMSCs) using a two-phase liquid/liquid system. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2017; 92:1577-1589. [PMID: 28706339 PMCID: PMC5485050 DOI: 10.1002/jctb.5279] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 05/05/2023]
Abstract
BACKGROUND Human mesenchymal stem/stromal cells (hMSCs) are at the forefront of regenerative medicine applications due to their relatively easy isolation and availability in adults, potential to differentiate and to secrete a range of trophic factors that could determine specialised tissue regeneration. To date, hMSCs have been successfully cultured in vitro on substrates such as polystyrene dishes (TCPS) or microcarriers. However, hMSC sub-cultivation and harvest typically employs proteolytic enzymes that act by cleaving important cell membrane proteins resulting in long-term cell damage. In a process where the cells themselves are the product, a non-enzymatic and non-damaging harvesting approach is desirable. RESULTS An alternative system for hMSC expansion and subsequent non-enzymatic harvest was investigated here. A liquid/liquid two-phase system was proposed, comprising a selected perfluorocarbon (FC40) and growth medium (DMEM). The cells exhibited similar cell morphologies compared with TCPS. Moreover, they retained their identity and differentiation potential post-expansion and post-harvest. Further, no significant difference was found when culturing hMSCs in the culture systems prepared with either fresh or recycled FC40 perfluorocarbon. CONCLUSIONS These findings make the FC40/DMEM system an attractive alternative for traditional cell culture substrates due to their ease of cell recovery and recyclability, the latter impacting on overall process costs. © 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Mariana P Hanga
- Centre for Biological EngineeringLoughborough UniversityLoughboroughUK
- Aston Medical Research InstituteAston UniversityBirminghamUK
| | - Halina Murasiewicz
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
- West Pomeranian University of Technology SzczecinFaculty of Chemical Technology and EngineeringSzczecinPoland
| | - Andrzej W Pacek
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
| | - Alvin W Nienow
- Centre for Biological EngineeringLoughborough UniversityLoughboroughUK
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
- Aston Medical Research InstituteAston UniversityBirminghamUK
| | - Karen Coopman
- Centre for Biological EngineeringLoughborough UniversityLoughboroughUK
| | - Christopher J Hewitt
- Centre for Biological EngineeringLoughborough UniversityLoughboroughUK
- Aston Medical Research InstituteAston UniversityBirminghamUK
| |
Collapse
|
13
|
Hanga MP, Murasiewicz H, Pacek AW, Nienow AW, Coopman K, Hewitt CJ. Expansion of bone marrow-derived human mesenchymal stem/stromal cells (hMSCs) using a two-phase liquid/liquid system. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2017. [PMID: 28706339 DOI: 10.1002/jctb.5279m] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND Human mesenchymal stem/stromal cells (hMSCs) are at the forefront of regenerative medicine applications due to their relatively easy isolation and availability in adults, potential to differentiate and to secrete a range of trophic factors that could determine specialised tissue regeneration. To date, hMSCs have been successfully cultured in vitro on substrates such as polystyrene dishes (TCPS) or microcarriers. However, hMSC sub-cultivation and harvest typically employs proteolytic enzymes that act by cleaving important cell membrane proteins resulting in long-term cell damage. In a process where the cells themselves are the product, a non-enzymatic and non-damaging harvesting approach is desirable. RESULTS An alternative system for hMSC expansion and subsequent non-enzymatic harvest was investigated here. A liquid/liquid two-phase system was proposed, comprising a selected perfluorocarbon (FC40) and growth medium (DMEM). The cells exhibited similar cell morphologies compared with TCPS. Moreover, they retained their identity and differentiation potential post-expansion and post-harvest. Further, no significant difference was found when culturing hMSCs in the culture systems prepared with either fresh or recycled FC40 perfluorocarbon. CONCLUSIONS These findings make the FC40/DMEM system an attractive alternative for traditional cell culture substrates due to their ease of cell recovery and recyclability, the latter impacting on overall process costs. © 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Mariana P Hanga
- Centre for Biological EngineeringLoughborough UniversityLoughboroughUK
- Aston Medical Research InstituteAston UniversityBirminghamUK
| | - Halina Murasiewicz
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
- West Pomeranian University of Technology SzczecinFaculty of Chemical Technology and EngineeringSzczecinPoland
| | - Andrzej W Pacek
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
| | - Alvin W Nienow
- Centre for Biological EngineeringLoughborough UniversityLoughboroughUK
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
- Aston Medical Research InstituteAston UniversityBirminghamUK
| | - Karen Coopman
- Centre for Biological EngineeringLoughborough UniversityLoughboroughUK
| | - Christopher J Hewitt
- Centre for Biological EngineeringLoughborough UniversityLoughboroughUK
- Aston Medical Research InstituteAston UniversityBirminghamUK
| |
Collapse
|
14
|
Hanga MP, Murasiewicz H, Pacek AW, Nienow AW, Coopman K, Hewitt CJ. Expansion of bone marrow-derived human mesenchymal stem/stromal cells (hMSCs) using a two-phase liquid/liquid system. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2017. [PMID: 28706339 DOI: 10.1002/jctb.5166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND Human mesenchymal stem/stromal cells (hMSCs) are at the forefront of regenerative medicine applications due to their relatively easy isolation and availability in adults, potential to differentiate and to secrete a range of trophic factors that could determine specialised tissue regeneration. To date, hMSCs have been successfully cultured in vitro on substrates such as polystyrene dishes (TCPS) or microcarriers. However, hMSC sub-cultivation and harvest typically employs proteolytic enzymes that act by cleaving important cell membrane proteins resulting in long-term cell damage. In a process where the cells themselves are the product, a non-enzymatic and non-damaging harvesting approach is desirable. RESULTS An alternative system for hMSC expansion and subsequent non-enzymatic harvest was investigated here. A liquid/liquid two-phase system was proposed, comprising a selected perfluorocarbon (FC40) and growth medium (DMEM). The cells exhibited similar cell morphologies compared with TCPS. Moreover, they retained their identity and differentiation potential post-expansion and post-harvest. Further, no significant difference was found when culturing hMSCs in the culture systems prepared with either fresh or recycled FC40 perfluorocarbon. CONCLUSIONS These findings make the FC40/DMEM system an attractive alternative for traditional cell culture substrates due to their ease of cell recovery and recyclability, the latter impacting on overall process costs. © 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Mariana P Hanga
- Centre for Biological EngineeringLoughborough UniversityLoughboroughUK
- Aston Medical Research InstituteAston UniversityBirminghamUK
| | - Halina Murasiewicz
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
- West Pomeranian University of Technology SzczecinFaculty of Chemical Technology and EngineeringSzczecinPoland
| | - Andrzej W Pacek
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
| | - Alvin W Nienow
- Centre for Biological EngineeringLoughborough UniversityLoughboroughUK
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
- Aston Medical Research InstituteAston UniversityBirminghamUK
| | - Karen Coopman
- Centre for Biological EngineeringLoughborough UniversityLoughboroughUK
| | - Christopher J Hewitt
- Centre for Biological EngineeringLoughborough UniversityLoughboroughUK
- Aston Medical Research InstituteAston UniversityBirminghamUK
| |
Collapse
|
15
|
Jeong YG, Lee JS, Shim JK, Hur W. A scaffold-free surface culture of B16F10 murine melanoma cells based on magnetic levitation. Cytotechnology 2016. [PMID: 27670438 DOI: 10.1007/s10616-10016-10026-10617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023] Open
Abstract
Multicellular spheroids are obtained in a variety of three-dimensional (3D) culture systems without the use of supporting scaffold. We present here a 3D culture method that resulted in a multicellular sheet under scaffold-free conditions. A floating disk-shaped 3D culture was prepared by magnetic levitation of B16F10 cells that has ingested Fe3O4-containing fibroin microspheres. The melanoma disk grew up to 19 mm in diameter and the thickness was ranged between 80 and 100 μm. The 3D culture was filled with closely packed cells that were proliferating exponentially at a specific growth rate of µ = 0.015 h-1. Approximately half of the cells were Ki-67 positive with no detectable levels of apoptotic or autophagic cells. However, the percentage of propidium iodide-permeable cells was 8.5 ± 1.2 %, which was probably due to physical damage in the cell membrane caused by Fe3O4-containing microspheres under a strong magnetic field. Melanin production increased by a factor of 3.0-3.7 in the 3D culture, due to an increased population of pigmented cells. This study presented a surface 3D culture of B16F10 cells without the use of a scaffold based on magnetic levitation.
Collapse
Affiliation(s)
- Yun Gyu Jeong
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon, 200-701, Korea
| | - Jin Sil Lee
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon, 200-701, Korea
| | - Jae Kwon Shim
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon, 200-701, Korea
| | - Won Hur
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon, 200-701, Korea.
| |
Collapse
|
16
|
Jeong YG, Lee JS, Shim JK, Hur W. A scaffold-free surface culture of B16F10 murine melanoma cells based on magnetic levitation. Cytotechnology 2016; 68:2323-2334. [PMID: 27670438 DOI: 10.1007/s10616-016-0026-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 08/30/2016] [Indexed: 01/03/2023] Open
Abstract
Multicellular spheroids are obtained in a variety of three-dimensional (3D) culture systems without the use of supporting scaffold. We present here a 3D culture method that resulted in a multicellular sheet under scaffold-free conditions. A floating disk-shaped 3D culture was prepared by magnetic levitation of B16F10 cells that has ingested Fe3O4-containing fibroin microspheres. The melanoma disk grew up to 19 mm in diameter and the thickness was ranged between 80 and 100 μm. The 3D culture was filled with closely packed cells that were proliferating exponentially at a specific growth rate of µ = 0.015 h-1. Approximately half of the cells were Ki-67 positive with no detectable levels of apoptotic or autophagic cells. However, the percentage of propidium iodide-permeable cells was 8.5 ± 1.2 %, which was probably due to physical damage in the cell membrane caused by Fe3O4-containing microspheres under a strong magnetic field. Melanin production increased by a factor of 3.0-3.7 in the 3D culture, due to an increased population of pigmented cells. This study presented a surface 3D culture of B16F10 cells without the use of a scaffold based on magnetic levitation.
Collapse
Affiliation(s)
- Yun Gyu Jeong
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon, 200-701, Korea
| | - Jin Sil Lee
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon, 200-701, Korea
| | - Jae Kwon Shim
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon, 200-701, Korea
| | - Won Hur
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon, 200-701, Korea.
| |
Collapse
|
17
|
Sutoh A, Kasuya MCZ, Hatanaka K. Cellular glycosylation of amphiphilic saccharide primer in liquid/liquid interface culture system employing fluorous solvents. J Fluor Chem 2016. [DOI: 10.1016/j.jfluchem.2016.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Rajalakshmy AR, Malathi J, Madhavan HN, Samuel JKA. Mebiolgel, a thermoreversible polymer as a scaffold for three dimensional culture of Huh7 cell line with improved hepatocyte differentiation marker expression and HCV replication. Indian J Med Microbiol 2016; 33:554-9. [PMID: 26470963 DOI: 10.4103/0255-0857.167330] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
PURPOSE A novel three dimensional (3D) culture system purely synthesised from co-polymer which is free from biological contamination for Huh7 cell cultivation and hepatitis C virus (HCV) replication has been attempted. MATERIALS AND METHODS Mebiolgel, a thermo-reversible gelation polymer was used as a 3D scaffold for culturing Huh7, a liver carcinoma cell line used in our study. The 3D culture of the cells were infected with cell culture derived HCV. RESULT The scaffold supported the cell growth as 3D spheroids for up to 63 days. Moreover mebiolgel was found to be improving the hepatocyte differentiation of Huh7 cells at the transcript level. Three dimensional culture was susceptible for HCV infection, and this was confirmed by detecting the HCV replication intermediate viral core antigen. CONCLUSION Mebiolgel based culture system was proven to be suited for 3D culture of Huh7 cells by improvising liver specific genotypic expression and was susceptible for HCV replication. Since mebiolgel based Huh 7 express better hepatocyte differentiation markers genotypically, this can be implemented as an alternate for primary hepatocytes in studies such as viral isolation from patient serum.
Collapse
Affiliation(s)
| | | | - H N Madhavan
- Yamanashi University-Faculty of Medicine, 1110 Shimokatoh, Tamaho, Chuo 409-3898, Yamanashi, Japan
| | | |
Collapse
|
19
|
Li B, Wang X, Wang Y, Gou W, Yuan X, Peng J, Guo Q, Lu S. Past, present, and future of microcarrier-based tissue engineering. J Orthop Translat 2015; 3:51-57. [PMID: 30035040 PMCID: PMC5982391 DOI: 10.1016/j.jot.2015.02.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/23/2015] [Indexed: 12/18/2022] Open
Abstract
The top issue in tissue engineering is how to obtain more seed cells quickly and to preserve their characteristic morphology during in vitro expansion culture of cells. Microcarriers can help to amplify cell numbers and maintain the appropriate phenotype for tissue repair and restoration of function. In addition, microtissue with cell microcarriers can be used to repair diseased tissues or organs. This review introduces the materials used for, and classification of, microcarriers and the improvements in, and potential applications of, microtissues with cell microcarriers in tissue engineering.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| | | | | |
Collapse
|
20
|
Koch A, Saran S, Tran DDH, Klebba-Färber S, Thiesler H, Sewald K, Schindler S, Braun A, Klopfleisch R, Tamura T. Murine precision-cut liver slices (PCLS): a new tool for studying tumor microenvironments and cell signaling ex vivo. Cell Commun Signal 2014; 12:73. [PMID: 25376987 PMCID: PMC4226874 DOI: 10.1186/s12964-014-0073-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/23/2014] [Indexed: 11/29/2022] Open
Abstract
Background One of the most insidious characteristics of cancer is its spread to and ability to compromise distant organs via the complex process of metastasis. Communication between cancer cells and organ-resident cells via cytokines/chemokines and direct cell-cell contacts are key steps for survival, proliferation and invasion of metastasized cancer cells in organs. Precision-cut liver slices (PCLS) are considered to closely reflect the in vivo situation and are potentially useful for studying the interaction of cancer cells with liver-resident cells as well as being a potentially useful tool for screening anti-cancer reagents. Application of the PCLS technique in the field of cancer research however, has not yet been well developed. Results We established the mouse PCLS system using perfluorodecalin (PFD) as an artificial oxygen carrier. Using this system we show that the adherence of green fluorescent protein (GFP) labeled MDA-MB-231 (highly invasive) cells to liver tissue in the PCLS was 5-fold greater than that of SK-BR-3 (less invasive) cells. In addition, we generated PCLS from THOC5, a member of transcription/export complex (TREX), knockout (KO) mice. The PCLS still expressed Gapdh or Albumin mRNAs at normal levels, while several chemokine/growth factor or metalloprotease genes, such as Cxcl12, Pdgfa, Tgfb, Wnt11, and Mmp1a genes were downregulated more than 2-fold. Interestingly, adhesion of cancer cells to THOC5 KO liver slices was far less (greater than 80% reduction) than to wild-type liver slices. Conclusion Mouse PCLS cultures in the presence of PFD may serve as a useful tool for screening local adherence and invasiveness of individual cancer cells, since single cells can be observed. This method may also prove useful for identification of genes in liver-resident cells that support cancer invasion by using PCLS from transgenic liver.
Collapse
Affiliation(s)
- Alexandra Koch
- Institut fuer Biochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623, Hannover, Germany.
| | - Shashank Saran
- Institut fuer Biochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623, Hannover, Germany.
| | - Doan Duy Hai Tran
- Institut fuer Biochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623, Hannover, Germany.
| | - Sabine Klebba-Färber
- Institut fuer Biochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623, Hannover, Germany.
| | - Hauke Thiesler
- Institut fuer Biochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623, Hannover, Germany.
| | - Katherina Sewald
- Fraunhofer Institut für Toxikologie und Experimentelle Medizin Atemwegspharmakologie, Nikolai-Fuchs-Str.1, D-30625, Hannover, Germany.
| | - Susann Schindler
- Fraunhofer Institut für Toxikologie und Experimentelle Medizin Atemwegspharmakologie, Nikolai-Fuchs-Str.1, D-30625, Hannover, Germany.
| | - Armin Braun
- Fraunhofer Institut für Toxikologie und Experimentelle Medizin Atemwegspharmakologie, Nikolai-Fuchs-Str.1, D-30625, Hannover, Germany.
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Freie Universitaet Berlin, Robert-von-Ostertag- Str. 15, D-14163, Berlin, Germany.
| | - Teruko Tamura
- Institut fuer Biochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623, Hannover, Germany.
| |
Collapse
|
21
|
Pilarek M, Grabowska I, Senderek I, Wojasiński M, Janicka J, Janczyk-Ilach K, Ciach T. Liquid perfluorochemical-supported hybrid cell culture system for proliferation of chondrocytes on fibrous polylactide scaffolds. Bioprocess Biosyst Eng 2014; 37:1707-15. [PMID: 24532258 PMCID: PMC4141970 DOI: 10.1007/s00449-014-1143-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 01/28/2014] [Indexed: 12/22/2022]
Abstract
CP5 bovine chondrocytes were cultured on biodegradable electrospun fibrous polylactide (PLA) scaffolds placed on a flexible interface formed between two immiscible liquid phases: (1) hydrophobic perfluorochemical (PFC) and (2) aqueous culture medium, as a new way of cartilage implant development. Robust and intensive growth of CP5 cells was achieved in our hybrid liquid-solid-liquid culture system consisting of the fibrous PLA scaffolds in contrast to limited growth of the CP5 cells in traditional culture system with PLA scaffold placed on solid surface. The multicellular aggregates of CP5 cells covered the surface of PLA scaffolds and the chondrocytes migrated through and overgrew internal fibers of the scaffolds. Our hybrid culture system simultaneously allows the adhesion of adherent CP5 cells to fibers of PLA scaffolds as well as, due to use of phase of PFC, enhances the mass transfer in the case of supplying/removing of respiratory gases, i.e., O2 and CO2. Our flexible (independent of vessel shape) system is simple, ready-to-use and may utilize a variety of polymer-based scaffolds traditionally proposed for implant development.
Collapse
Affiliation(s)
- Maciej Pilarek
- Biotechnology and Bioprocess Engineering Division, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645, Warsaw, Poland,
| | | | | | | | | | | | | |
Collapse
|
22
|
Sykłowska-Baranek K, Pilarek M, Cichosz M, Pietrosiuk A. Liquid perfluorodecalin application for in situ extraction and enhanced naphthoquinones production in Arnebia euchroma cell suspension cultures. Appl Biochem Biotechnol 2014; 172:2618-27. [PMID: 24420283 PMCID: PMC3962574 DOI: 10.1007/s12010-013-0701-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/25/2013] [Indexed: 11/17/2022]
Abstract
Suspension cultures of Arnebia euchroma supported with liquid perfluorodecalin (PFD) degassed, aerated, or ethylene-saturated were investigated as a novel in situ extraction system for enhanced alkannin/shikonin production. Simultaneously, the effect of PFD applied as the liquid gas carrier on the growth of A. euchroma biomass was studied. The similar dry (4-fold) and fresh (7-fold) biomass increase was observed in the control (without PFD addition) and supplemented with PFD-degassed or PFD-aerated cultures while PFD-ethylene application impeded cell growth. The highest total of alkannin/shikonin production (23.23 mg flask−1) was observed when PFD-aerated has been used and it resulted in about 50 % higher yield of alkannin/shikonin compared with the control culture. Chiral HPLC analysis revealed that in cultures supported with PFD, both alkannin and shikonin were produced. Their mutual ratio varied depending on culture conditions, and the accumulation of alkannin prevailed under almost all culture conditions. PFD has proved to be exceptionally efficient and cell-safe solvent for the in situ extraction of naphthoquinone red pigments without exerting any detrimental effects on cell growth. Extracellularly secreted red naphthoquinones were easily dissolved and extracted from the PFD phase, which can be regenerated and reused (e.g., in continuous culture system).
Collapse
Affiliation(s)
- Katarzyna Sykłowska-Baranek
- Department of Biology and Pharmaceutical Botany, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland,
| | | | | | | |
Collapse
|