1
|
Huang T, Zeng Y, Li C, Zhou Z, Xu J, Wang L, Yu DG, Wang K. Application and Development of Electrospun Nanofiber Scaffolds for Bone Tissue Engineering. ACS Biomater Sci Eng 2024; 10:4114-4144. [PMID: 38830819 DOI: 10.1021/acsbiomaterials.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Nanofiber scaffolds have gained significant attention in the field of bone tissue engineering. Electrospinning, a straightforward and efficient technique for producing nanofibers, has been extensively researched. When used in bone tissue engineering scaffolds, electrospun nanofibers with suitable surface properties promote new bone tissue growth and enhance cell adhesion. Recent advancements in electrospinning technology have provided innovative approaches for scaffold fabrication in bone tissue engineering. This review comprehensively examines the utilization of electrospun nanofibers in bone tissue engineering scaffolds and evaluates the relevant literature. The review begins by presenting the fundamental principles and methodologies of electrospinning. It then discusses various materials used in the production of electrospun nanofiber scaffolds for bone tissue engineering, including natural and synthetic polymers, as well as certain inorganic materials. The challenges associated with these materials are also described. The review focuses on novel electrospinning techniques for scaffold construction in bone tissue engineering, such as multilayer nanofibers, multifluid electrospinning, and the integration of electrospinning with other methods. Recent advancements in electrospinning technology have enabled the fabrication of precisely aligned nanofiber scaffolds with nanoscale architectures. These innovative methods also facilitate the fabrication of biomimetic structures, wherein bioactive substances can be incorporated and released in a controlled manner for drug delivery purposes. Moreover, they address issues encountered with traditional electrospun nanofibers, such as mechanical characteristics and biocompatibility. Consequently, the development and implementation of novel electrospinning technologies have revolutionized scaffold fabrication for bone tissue engineering.
Collapse
Affiliation(s)
- Tianyue Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology 516 Jungong Road, Shanghai 200093, China
| | - YuE Zeng
- Department of Neurology, RuiJin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chaofei Li
- Department of General Surgery, RuiJin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhengqing Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology 516 Jungong Road, Shanghai 200093, China
| | - Jie Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology 516 Jungong Road, Shanghai 200093, China
| | - Lean Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology 516 Jungong Road, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology 516 Jungong Road, Shanghai 200093, China
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
2
|
Wen Z, Chen Y, Liao P, Wang F, Zeng W, Liu S, Wu H, Wang N, Moroni L, Zhang M, Duan Y, Chen H. In Situ Precision Cell Electrospinning as an Efficient Stem Cell Delivery Approach for Cutaneous Wound Healing. Adv Healthc Mater 2023; 12:e2300970. [PMID: 37379527 DOI: 10.1002/adhm.202300970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/10/2023] [Indexed: 06/30/2023]
Abstract
Mesenchymal stem cell (MSC) therapies have been brought forward as a promising treatment modality for cutaneous wound healing. However, current approaches for stem cell delivery have many drawbacks, such as lack of targetability and cell loss, leading to poor efficacy of stem cell therapy. To overcome these problems, in the present study, an in situ cell electrospinning system is developed as an attractive approach for stem cell delivery. MSCs have a high cell viability of over 90% even with a high applied voltage of 15 kV post-cell electrospinning process. In addition, cell electrospinning does not show any negative effect on the surface marker expression and differentiation capacity of MSCs. In vivo studies demonstrate that in situ cell electrospinning treatment can promote cutaneous wound healing through direct deposition of bioactive fish gelatin fibers and MSCs onto wound sites, leading to a synergic therapeutic effect. The approach enhances extracellular matrix remodeling by increasing collagen deposition, promotes angiogenesis by increasing the expression of vascular endothelial growth factor (VEGF) and forming small blood vessels, and dramatically reduces the expression of interleukin-6 (IL-6) during wound healing. The use of in situ cell electrospinning system potentially provides a rapid, no touch, personalized treatment for cutaneous wound healing.
Collapse
Affiliation(s)
- Zhengbo Wen
- Laboratory of Stem Cells and Translational Medicine, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yuxin Chen
- Laboratory of Stem Cells and Translational Medicine, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Peilin Liao
- Laboratory of Stem Cells and Translational Medicine, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Fengyu Wang
- Laboratory of Stem Cells and Translational Medicine, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Weiping Zeng
- Laboratory of Stem Cells and Translational Medicine, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Shoupei Liu
- Laboratory of Stem Cells and Translational Medicine, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Haibing Wu
- Laboratory of Stem Cells and Translational Medicine, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Ning Wang
- Laboratory of Stem Cells and Translational Medicine, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Minmin Zhang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, China
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, School of Medicine, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Honglin Chen
- Laboratory of Stem Cells and Translational Medicine, School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| |
Collapse
|
3
|
Nosoudi N, Hasanzadeh A, Hart M, Weaver B. Advancements and Future Perspectives in Cell Electrospinning and Bio-Electrospraying. Adv Biol (Weinh) 2023; 7:e2300213. [PMID: 37438326 DOI: 10.1002/adbi.202300213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/29/2023] [Indexed: 07/14/2023]
Abstract
In recent years, researchers have tried to include living cells into electrospun nanofibers or droplets, leading to the field of live cell electrospinning and bio-electrospraying . In live cell electrospinning and bio-electrospraying, cells are embedded in a polymer and subject to the process of mechanical and electrical stimulation of the process. The resulting nanofiber mats or droplets with embedded cells have several potential applications in tissue engineering. The nanofiber structure provides a supportive and porous environment for cells to grow and interact with their surroundings. This can be favorable for tissue regeneration, where the goal is to create functional tissues that closely mimic the extracellular matrix. However, there are also challenges associated with live cell electrospinning and electrospraying, including maintaining cell viability and uniform cell distribution within the nanofiber mat. Additionally, the electrospinning/electrospraying process can have an impact on cell behavior, phenotype, and genotype, which must be cautiously monitored and studied. Overall, the goal of this review paper is to provide a comprehensive and critical analysis of the existing literature on cell electrospinning and bio-electrospraying.
Collapse
Affiliation(s)
- Nasim Nosoudi
- Biomedical Engineering Department, College of Engineering and Computer Science, Marshall University, Huntington, WV, 25755-2586, USA
| | - Amin Hasanzadeh
- Department of Polymer Engineering, Amirkabir University of Technology, Tehran, 1591634311, Iran
| | - Madeline Hart
- Biomedical Engineering Department, College of Engineering and Computer Science, Marshall University, Huntington, WV, 25755-2586, USA
| | - Baylee Weaver
- Biomedical Engineering Department, College of Engineering and Computer Science, Marshall University, Huntington, WV, 25755-2586, USA
| |
Collapse
|
4
|
Semitela Â, Ramalho G, Capitão A, Sousa C, Mendes AF, Aap Marques P, Completo A. Bio-electrospraying assessment toward in situ chondrocyte-laden electrospun scaffold fabrication. J Tissue Eng 2022; 13:20417314211069342. [PMID: 35024136 PMCID: PMC8743920 DOI: 10.1177/20417314211069342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/09/2021] [Indexed: 01/05/2023] Open
Abstract
Electrospinning has been widely used to fabricate fibrous scaffolds for cartilage tissue engineering, but their small pores severely restrict cell infiltration, resulting in an uneven distribution of cells across the scaffold, particularly in three-dimensional designs. If bio-electrospraying is applied, direct chondrocyte incorporation into the fibers during electrospinning may be a solution. However, before this approach can be effectively employed, it is critical to identify whether chondrocytes are adversely affected. Several electrospraying operating settings were tested to determine their effect on the survival and function of an immortalized human chondrocyte cell line. These chondrocytes survived through an electric field formed by low needle-to-collector distances and low voltage. No differences in chondrocyte viability, morphology, gene expression, or proliferation were found. Preliminary data of the combination of electrospraying and polymer electrospinning disclosed that chondrocyte integration was feasible using an alternated approach. The overall increase in chondrocyte viability over time indicated that the embedded cells retained their proliferative capacity. Besides the cell line, primary chondrocytes were also electrosprayed under the previously optimized operational conditions, revealing the higher sensitivity degree of these cells. Still, their post-electrosprayed viability remained considerably high. The data reported here further suggest that bio-electrospraying under the optimal operational conditions might be a promising alternative to the existent cell seeding techniques, promoting not only cells safe delivery to the scaffold, but also the development of cellularized cartilage tissue constructs.
Collapse
Affiliation(s)
- Ângela Semitela
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, Aveiro, Portugal
| | - Gonçalo Ramalho
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, Aveiro, Portugal
| | - Ana Capitão
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Cátia Sousa
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Alexandrina F Mendes
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Paula Aap Marques
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, Aveiro, Portugal
| | - António Completo
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
5
|
Das P, Hore A, Ghosh A, Datta P. Bone tissue engineering construct fabricated using a cell electrospinning technique with polyglutamic acid biopolymer. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02612-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Tycova A, Prikryl J, Kotzianova A, Datinska V, Velebny V, Foret F. Electrospray: More than just an ionization source. Electrophoresis 2020; 42:103-121. [PMID: 32841405 DOI: 10.1002/elps.202000191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022]
Abstract
Electrospraying (ES) is a potential-driven process of liquid atomization, which is employed in the field of analytical chemistry, particularly as an ionization technique for mass spectrometric analyses of biomolecules. In this review, we demonstrate the extraordinary versatility of the electrospray by overviewing the specifics and advanced applications of ES-based processing of low molecular mass compounds, biomolecules, polymers, nanoparticles, and cells. Thus, under suitable experimental conditions, ES can be used as a powerful tool for highly controlled deposition of homogeneous films or various patterns, which may sometimes even be organized into 3D structures. We also emphasize its capacity to produce composite materials including encapsulation systems and polymeric fibers. Further, we present several other, less common ES-based applications. This review provides an insight into the remarkable potential of ES, which can be very useful in the designing of innovative and unique strategies.
Collapse
Affiliation(s)
- Anna Tycova
- Institute of Analytical Chemistry of the CAS, Brno, 602 00, Czech Republic
| | - Jan Prikryl
- Institute of Analytical Chemistry of the CAS, Brno, 602 00, Czech Republic
| | - Adela Kotzianova
- R&D Department, Contipro a.s., Dolni Dobrouc, 561 02, Czech Republic
| | - Vladimira Datinska
- Institute of Analytical Chemistry of the CAS, Brno, 602 00, Czech Republic
| | - Vladimir Velebny
- R&D Department, Contipro a.s., Dolni Dobrouc, 561 02, Czech Republic
| | - Frantisek Foret
- Institute of Analytical Chemistry of the CAS, Brno, 602 00, Czech Republic
| |
Collapse
|
7
|
Helenes González C, Jayasinghe SN, Ferretti P. Bio-electrosprayed human neural stem cells are viable and maintain their differentiation potential. F1000Res 2020; 9:267. [PMID: 32518635 PMCID: PMC7255967 DOI: 10.12688/f1000research.19901.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Bio-electrospray (BES) is a jet-based delivery system driven by an electric field that has the ability to form micro to nano-sized droplets. It holds great potential as a tissue engineering tool as it can be used to place cells into specific patterns. As the human central nervous system (CNS) cannot be studied in vivo at the cellular and molecular level, in vitro CNS models are needed. Human neural stem cells (hNSCs) are the CNS building block as they can generate both neurones and glial cells. Methods: Here we assessed for the first time how hNSCs respond to BES. To this purpose, different hNSC lines were sprayed at 10 kV and their ability to survive, grow and differentiate was assessed at different time points. Results: BES induced only a small and transient decrease in hNSC metabolic activity, from which the cells recovered by day 6, and no significant increase in cell death was observed, as assessed by flow cytometry. Furthermore, bio-electrosprayed hNSCs differentiated as efficiently as controls into neurones, astrocytes and oligodendrocytes, as shown by morphological, protein and gene expression analysis. Conclusions: This study highlights the robustness of hNSCs and identifies BES as a suitable technology that could be developed for the direct deposition of these cells in specific locations and configurations.
Collapse
Affiliation(s)
- Citlali Helenes González
- Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Suwan N Jayasinghe
- BioPhysics Group, Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
| | - Patrizia Ferretti
- Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| |
Collapse
|
8
|
Helenes González C, Jayasinghe SN, Ferretti P. Bio-electrosprayed human neural stem cells are viable and maintain their differentiation potential. F1000Res 2020; 9:267. [PMID: 32518635 PMCID: PMC7255967 DOI: 10.12688/f1000research.19901.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/02/2020] [Indexed: 03/30/2024] Open
Abstract
Background: Bio-electrospray (BES) is a jet-based delivery system driven by an electric field that has the ability to form micro to nano-sized droplets. It holds great potential as a tissue engineering tool as it can be used to place cells into specific patterns. As the human central nervous system (CNS) cannot be studied in vivo at the cellular and molecular level, in vitro CNS models are needed. Human neural stem cells (hNSCs) are the CNS building block as they can generate both neurones and glial cells. Methods: Here we assessed for the first time how hNSCs respond to BES. To this purpose, different hNSC lines were sprayed at 10 kV and their ability to survive, grow and differentiate was assessed at different time points. Results: BES induced only a small and transient decrease in hNSC metabolic activity, from which cells recovered by day 6, and no significant increase in cell death was observed, as assessed by flow cytometry. Furthermore, bio-electrosprayed hNSCs differentiated as efficiently as controls into neurones, astrocytes and oligodendrocytes as shown by morphological, protein and gene expression analysis. Conclusions: This study highlights the robustness of hNSCs and identifies BES as a suitable technology that could be developed for the direct deposition of these cells in specific locations and configurations.
Collapse
Affiliation(s)
- Citlali Helenes González
- Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Suwan N. Jayasinghe
- BioPhysics Group, Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
| | - Patrizia Ferretti
- Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| |
Collapse
|
9
|
Zou Q, Grottkau BE, He Z, Shu L, Yang L, Ma M, Ye C. Biofabrication of valentine-shaped heart with a composite hydrogel and sacrificial material. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110205. [PMID: 31924015 DOI: 10.1016/j.msec.2019.110205] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/23/2019] [Accepted: 09/12/2019] [Indexed: 12/19/2022]
Abstract
3D bioprinting represents a potential solution for organs regeneration, however, the production of complex tissues and organs that are in large size, randomly shaped, hollow, and contain integrated pre-vascularization still faces multiple challenges. This study aimed to test the feasibility of our 3D printing scheme for the manufacturing of micro-fluid channel networks complex three-dimensional tissue structures. The reverse engineering software was used to design the CAD model and polyvinyl alcohol (PVA) was used as the sacrificial material to print the sacrificial stent use the bioprinter nozzle 1. Hydrogel composite H9c2 and human umbilical vein endothelial cells (HUVECs) were mixed with sodium alginate, agarose solution and platelet-rich plasma (PRP) as cellular bioink, which was extruded through nozzle 2 to deposit the internal pores of the sacrificial scaffold. The scaffold dissolved, change to a flexible, hollow and micro-fluid channel networks complex structure. The 3D-bioprinting technology can construct a micro-fluid channel networks valentine heart with a self-defined height and hollow in suitable mechanical properties. The cells proliferate and maintain their biological properties within the printed constructs. This study demonstrates that valentine heart-like constructs can be fabricated with 3D bioprinting using sacrificial and hydrogel materials.
Collapse
Affiliation(s)
- Qiang Zou
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, Guiyang, 550004, China; National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guiyang, 550004, China; Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Brian E Grottkau
- The Laboratory for Therapeutic 3D Bioprinting, Department of Orthopaedic Surgery, Jackson 1115, Massachusetts General Hospital, Boston, 02114, USA
| | - Zhixu He
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, Guiyang, 550004, China
| | - Liping Shu
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, Guiyang, 550004, China; National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guiyang, 550004, China; Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang 550004, China
| | - Long Yang
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, Guiyang, 550004, China; National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guiyang, 550004, China; Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Minxian Ma
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, Guiyang, 550004, China; National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guiyang, 550004, China; Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang 550004, China
| | - Chuan Ye
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, Guiyang, 550004, China; National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guiyang, 550004, China; Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang 550004, China; China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, 310000, China.
| |
Collapse
|
10
|
Wang J, Jansen JA, Yang F. Electrospraying: Possibilities and Challenges of Engineering Carriers for Biomedical Applications-A Mini Review. Front Chem 2019; 7:258. [PMID: 31106194 PMCID: PMC6494963 DOI: 10.3389/fchem.2019.00258] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/01/2019] [Indexed: 12/25/2022] Open
Abstract
Electrospraying, a liquid atomization-based technique, has been used to produce and formulate micro/nanoparticular cargo carriers for various biomedical applications, including drug delivery, biomedical imaging, implant coatings, and tissue engineering. In this mini review, we begin with the main features of electrospraying methods to engineer carriers with various bioactive cargos, including genes, growth factors, and enzymes. In particular, this review focuses on the improvement of traditional electrospraying technology for the fabrication of carriers for living cells and providing a suitable condition for gene transformation. Subsequently, the major applications of the electrosprayed carriers in the biomedical field are highlighted. Finally, we finish with conclusions and future perspectives of electrospraying for high efficiency and safe production.
Collapse
Affiliation(s)
| | | | - Fang Yang
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
11
|
McCrea Z, Arnanthigo Y, Cryan SA, O’Dea S. A Novel Methodology for Bio-electrospraying Mesenchymal Stem Cells that Maintains Differentiation, Immunomodulatory and Pro-reparative Functions. J Med Biol Eng 2017. [DOI: 10.1007/s40846-017-0331-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Alehosseini A, Ghorani B, Sarabi-Jamab M, Tucker N. Principles of electrospraying: A new approach in protection of bioactive compounds in foods. Crit Rev Food Sci Nutr 2017; 58:2346-2363. [DOI: 10.1080/10408398.2017.1323723] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ali Alehosseini
- Department of Food Nanotechnology, Research Institute of Food Science & Technology (RIFST), Mashhad, Iran
| | - Behrouz Ghorani
- Department of Food Nanotechnology, Research Institute of Food Science & Technology (RIFST), Mashhad, Iran
| | - Mahboobe Sarabi-Jamab
- Department of Food Biotechnology, Research Institute of Food Science & Technology (RIFST), Mashhad, Iran
| | - Nick Tucker
- School of Engineering, University of Lincoln, Brayford Pool, Lincoln, United Kingdom
| |
Collapse
|
13
|
Recent development in cell encapsulations and their therapeutic applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:1247-1260. [DOI: 10.1016/j.msec.2017.04.103] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/18/2017] [Indexed: 02/08/2023]
|
14
|
Pharmaceutical Applications of Electrospraying. J Pharm Sci 2016; 105:2601-2620. [DOI: 10.1016/j.xphs.2016.04.024] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/14/2016] [Accepted: 04/22/2016] [Indexed: 02/01/2023]
|
15
|
Jin SE, Ahn HS, Kim JH, Arai Y, Lee SH, Yoon TJ, Hwang SJ, Sung JH. Boiling Method-Based Zinc Oxide Nanorods for Enhancement of Adipose-Derived Stem Cell Proliferation. Tissue Eng Part C Methods 2016; 22:847-55. [PMID: 27464704 DOI: 10.1089/ten.tec.2015.0528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Adipose-derived stem cells (ASCs) are typically expanded to acquire large numbers of cells for therapeutic applications. Diverse stimuli such as sphingosylphosphocholine and vitamin C have been used to increase the production yield and regenerative potential of ASCs. In the present study, we hypothesized that ZnO nanorods have promising potential for the enhancement of ASC proliferation. ZnO nanorods were prepared using three different methods: grinding and boiling at low temperature with and without surfactant. The physicochemical properties of the nanorods such as their crystallinity, morphology, size, and solvent compatibility were evaluated, and then, the ability of the synthesized ZnO nanorods to enhance ASC proliferation was investigated. Scanning electron microscopy images of all of the ZnO powders showed rod-shaped nanoflakes with lengths of 200-500 nm. Notably, although ZnO-G produced by the grinding method was well dispersed in ethanol, atomic force microscopy images of dispersions of both ZnO-B from boiling methods and ZnO-G indicated the presence of clusters of ZnO nanorods. In contrast, ZnO-B was freely dispersible in 5% dextrose of water and dimethyl sulfoxide, whereas ZnO-G and ZnO-M, produced by boiling with ethanolamine, were not. All three types of ZnO nanorods increased the proliferation of ASCs in a dose-dependent manner. These results collectively suggest that ZnO nanorods have promising potential for use as an agent for the enhancement of ASC proliferation.
Collapse
Affiliation(s)
- Su-Eon Jin
- 1 College of Pharmacy, Yonsei University , Incheon, Korea.,2 College of Medicine, Yonsei University , Seoul, Korea.,3 Institutes of Pharmaceutical Sciences, Yonsei University , Incheon, Korea
| | - Hyo-Sun Ahn
- 1 College of Pharmacy, Yonsei University , Incheon, Korea
| | - Ji Hye Kim
- 1 College of Pharmacy, Yonsei University , Incheon, Korea
| | - Yoshie Arai
- 4 Department of Biomedical Science, CHA University , Seongnam, Korea
| | - Soo-Hong Lee
- 4 Department of Biomedical Science, CHA University , Seongnam, Korea
| | - Tae-Jong Yoon
- 5 College of Pharmacy, Ajou University , Suwon, Korea
| | - Sung-Joo Hwang
- 1 College of Pharmacy, Yonsei University , Incheon, Korea.,3 Institutes of Pharmaceutical Sciences, Yonsei University , Incheon, Korea
| | - Jong-Hyuk Sung
- 1 College of Pharmacy, Yonsei University , Incheon, Korea.,3 Institutes of Pharmaceutical Sciences, Yonsei University , Incheon, Korea.,6 Stemmore, Co. Ltd. , Incheon, Korea
| |
Collapse
|
16
|
Alhasan L, Qi A, Rezk AR, Yeo LY, Chan PPY. Assessment of the potential of a high frequency acoustomicrofluidic nebulisation platform for inhaled stem cell therapy. Integr Biol (Camb) 2016; 8:12-20. [DOI: 10.1039/c5ib00206k] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study demonstrates the use of a novel high frequency acoustic nebulisation platform as an effective aerosolisation technique for inhaled mesenchymal stem cell (MSC) therapy.
Collapse
Affiliation(s)
- Layla Alhasan
- Department of Biotechnology & Biological Science
- RMIT University
- Melbourne
- Australia
- Micro/Nanophysics Research Laboratory
| | - Aisha Qi
- Micro/Nanophysics Research Laboratory
- RMIT University
- Melbourne
- Australia
| | - Amgad R. Rezk
- Micro/Nanophysics Research Laboratory
- RMIT University
- Melbourne
- Australia
| | - Leslie Y. Yeo
- Micro/Nanophysics Research Laboratory
- RMIT University
- Melbourne
- Australia
| | - Peggy P. Y. Chan
- Micro/Nanophysics Research Laboratory
- RMIT University
- Melbourne
- Australia
- Department of Biomedical Engineering
| |
Collapse
|
17
|
Mete M, Aydemir I, Tuglu IM, Selcuki M. Neurotoxic effects of local anesthetics on the mouse neuroblastoma NB2a cell line. Biotech Histochem 2014; 90:216-22. [PMID: 25539050 DOI: 10.3109/10520295.2014.979439] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Local anesthetics are used clinically for peripheral nerve blocks, epidural anesthesia, spinal anesthesia and pain management; large concentrations, continuous application and long exposure time can cause neurotoxicity. The mechanism of neurotoxicity caused by local anesthetics is unclear. Neurite outgrowth and apoptosis can be used to evaluate neurotoxic effects. Mouse neuroblastoma cells were induced to differentiate and generate neurites in the presence of local anesthetics. The culture medium was removed and replaced with serum-free medium plus 20 μl combinations of epidermal growth factor and fibroblast growth factor containing tetracaine, prilocaine, lidocaine or procaine at concentrations of 1, 10, 25, or 100 μl prior to neurite measurement. Cell viability, iNOS, eNOS and apoptosis were evaluated. Local anesthetics produced toxic effects by neurite inhibition at low concentrations and by apoptosis at high concentrations. There was an inverse relation between local anesthetic concentrations and cell viability. Comparison of different local anesthetics showed toxicity, as assessed by cell viability and apoptotic potency, in the following order: tetracaine > prilocaine > lidocaine > procaine. Procaine was the least neurotoxic local anesthetic and because it is short-acting, may be preferred for pain prevention during short procedures.
Collapse
Affiliation(s)
- M Mete
- Neurosurgery Department, Celal Bayar University School of Medicine , Manisa , Turkey
| | | | | | | |
Collapse
|