• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4619601)   Today's Articles (2086)   Subscriber (49403)
For: Su M, Li Y, Ge X, Tian P. 3-Hydroxypropionaldehyde-specific aldehyde dehydrogenase from Bacillus subtilis catalyzes 3-hydroxypropionic acid production in Klebsiella pneumoniae. Biotechnol Lett 2014;37:717-24. [PMID: 25409630 DOI: 10.1007/s10529-014-1730-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 11/05/2014] [Indexed: 11/26/2022]

Electronic supplementary material

The online version of this article (doi:10.1186/s12934-015-0388-0) contains supplementary material, which is available to authorized users.

Collapse
Number Cited by Other Article(s)
1
Extraction, Isolation, and Purification of Value-Added Chemicals from Lignocellulosic Biomass. Processes (Basel) 2022. [DOI: 10.3390/pr10091752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]  Open
2
Dong S, Liu X, Chen T, Zhou X, Li S, Fu S, Gong H. Mutation of rpoS is Beneficial for Suppressing Organic Acid Secretion During 1,3-Propandiol Biosynthesis in Klebsiella pneumoniae. Curr Microbiol 2022;79:218. [PMID: 35704098 DOI: 10.1007/s00284-022-02901-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 05/09/2022] [Indexed: 11/25/2022]
3
Son HF, Kim KJ. Structure Based Protein Engineering of Aldehyde Dehydrogenase from Azospirillum brasilense to Enhance Enzyme Activity against Unnatural 3-Hydroxypropionaldehyde. J Microbiol Biotechnol 2022;32:170-175. [PMID: 34866129 PMCID: PMC9628839 DOI: 10.4014/jmb.2110.10038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/15/2022]
4
Metabolic engineering of type II methanotroph, Methylosinus trichosporium OB3b, for production of 3-hydroxypropionic acid from methane via a malonyl-CoA reductase-dependent pathway. Metab Eng 2020;59:142-150. [PMID: 32061966 DOI: 10.1016/j.ymben.2020.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/07/2020] [Accepted: 02/09/2020] [Indexed: 12/21/2022]
5
Li W, Wang T, Dong Y, Li T. Screening, identification, and low-energy ion modified breeding of a yeast strain producing high level of 3-hydroxypropionic acid. Microbiologyopen 2019;9:e00956. [PMID: 31631574 PMCID: PMC6957407 DOI: 10.1002/mbo3.956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 11/09/2022]  Open
6
Westbrook AW, Miscevic D, Kilpatrick S, Bruder MR, Moo-Young M, Chou CP. Strain engineering for microbial production of value-added chemicals and fuels from glycerol. Biotechnol Adv 2019;37:538-568. [DOI: 10.1016/j.biotechadv.2018.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 10/03/2018] [Accepted: 10/10/2018] [Indexed: 12/22/2022]
7
Jers C, Kalantari A, Garg A, Mijakovic I. Production of 3-Hydroxypropanoic Acid From Glycerol by Metabolically Engineered Bacteria. Front Bioeng Biotechnol 2019;7:124. [PMID: 31179279 PMCID: PMC6542942 DOI: 10.3389/fbioe.2019.00124] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 05/07/2019] [Indexed: 11/13/2022]  Open
8
Diversity of cultivable fungal endophytes in Paullinia cupana (Mart.) Ducke and bioactivity of their secondary metabolites. PLoS One 2018;13:e0195874. [PMID: 29649297 PMCID: PMC5897019 DOI: 10.1371/journal.pone.0195874] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/30/2018] [Indexed: 11/19/2022]  Open
9
Biological Production of 3-Hydroxypropionic Acid: An Update on the Current Status. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4010013] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
10
Son HF, Park S, Yoo TH, Jung GY, Kim KJ. Structural insights into the production of 3-hydroxypropionic acid by aldehyde dehydrogenase from Azospirillum brasilense. Sci Rep 2017;7:46005. [PMID: 28393833 PMCID: PMC5385487 DOI: 10.1038/srep46005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/07/2017] [Indexed: 12/19/2022]  Open
11
A bacterial aromatic aldehyde dehydrogenase critical for the efficient catabolism of syringaldehyde. Sci Rep 2017;7:44422. [PMID: 28294121 PMCID: PMC5353671 DOI: 10.1038/srep44422] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/07/2017] [Indexed: 01/18/2023]  Open
12
Nitrile-hydrolyzing enzyme from Meyerozyma guilliermondii and its potential in biosynthesis of 3-hydroxypropionic acid. Bioprocess Biosyst Eng 2017;40:901-910. [PMID: 28285455 DOI: 10.1007/s00449-017-1754-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/18/2017] [Indexed: 01/26/2023]
13
Fan B, Li YL, Mariappan A, Becker A, Wu XQ, Borriss R. New SigD-regulated genes identified in the rhizobacterium Bacillus amyloliquefaciens FZB42. Biol Open 2016;5:1776-1783. [PMID: 27797724 PMCID: PMC5200910 DOI: 10.1242/bio.021501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]  Open
14
David Y, Oh YH, Baylon MG, Baritugo KA, Joo JC, Chae CG, Kim YJ, Park SJ. Microbial Production of 3-Hydroxypropionic Acid. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807833.ch14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]  Open
15
Zaushitsyna O, Dishisha T, Hatti-Kaul R, Mattiasson B. Crosslinked, cryostructured Lactobacillus reuteri monoliths for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol. J Biotechnol 2016;241:22-32. [PMID: 27829124 DOI: 10.1016/j.jbiotec.2016.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 10/13/2016] [Accepted: 11/04/2016] [Indexed: 11/28/2022]
16
Wang K, Tian P. Engineering Plasmid-Free Klebsiella Pneumoniae for Production of 3-Hydroxypropionic Acid. Curr Microbiol 2016;74:55-58. [PMID: 27787604 DOI: 10.1007/s00284-016-1153-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 10/21/2016] [Indexed: 11/28/2022]
17
Dishisha T, Pyo SH, Hatti-Kaul R. Bio-based 3-hydroxypropionic- and acrylic acid production from biodiesel glycerol via integrated microbial and chemical catalysis. Microb Cell Fact 2015;14:200. [PMID: 26690945 PMCID: PMC4687118 DOI: 10.1186/s12934-015-0388-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/16/2015] [Indexed: 11/28/2022]  Open

Integrated three-step process for conversion of biodiesel glycerol to 3-hydroxypropionic acid (3HP) and acrylic acid (AA). Glycerol was initially converted to equimolar quantities of 3HP and 1,3-propanediol (1,3PDO) using resting cells of Lactobacillus reuteri. Subsequently, the cell-free supernatant containing the mixture of 3HP and 1,3PDO was subjected to selective oxidation using resting cells of Gluconobacter oxydans where 1,3PDO was quantitatively converted to 3HP. The resulting solution of 3HP was dehydrated to AA over titanium dioxide (TiO2) at 230 °C.

  • Tarek Dishisha
    • Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, 221 00, Lund, Sweden. .,Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62511, Beni-Suef, Egypt.
  • Sang-Hyun Pyo
    • Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, 221 00, Lund, Sweden.
  • Rajni Hatti-Kaul
    • Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, 221 00, Lund, Sweden.
Collapse
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA