1
|
Malatji K, Fru PN, Mufhandu H, Alexandre K. Synthesis of fluorescence labelled aptamers for use as low-cost reagents in HIV/AIDS research and diagnostics. Biomed Rep 2021; 16:8. [PMID: 34938537 PMCID: PMC8686199 DOI: 10.3892/br.2021.1491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/20/2021] [Indexed: 11/30/2022] Open
Abstract
Aptamers are nucleic acids selected by systematic evolution of ligands by exponential enrichment. They have potential as alternatives to antibodies in medical research and diagnostics, with the advantages of being non-immunogenic and relatively inexpensive to produce. In the present study, gp120 aptamers conjugated with fluorescein isothiocyanate (FITC) were generated, which could interact with HIV-1 gp120. A previously isolated gp120 aptamer, CSIR 1.1, was conjugated with FITC by incubation with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and imidazole. The conjugation and binding to the glycoprotein were confirmed by flow cytometry. FITC conjugated aptamers showed an increase in fluorescence emission 24-fold higher than baseline, and this difference was statistically significant (P=0.0016). Compared with a commercially available biotinylated anti-gp120 antibody, detected using FITC conjugated streptavidin, the emission of fluorescence obtained from the FITC-conjugated aptamer was 8-fold higher, suggesting a stronger interaction with gp120. In addition, the FITC conjugated aptamer neutralized HIV-1 pseudoviruses with an average IC50 of 21.3 nM, similar to the parent aptamer that had an IC50 of 19.2 nM. However, the difference in inhibition between the two aptamers was not statistically significant (P=0.784). These results indicate that the FITC-conjugated aptamer generated in the present study could potentially be used as a low-cost reagent in HIV/AIDS research and diagnostics.
Collapse
Affiliation(s)
- Kanyane Malatji
- Council for Scientific and Industrial Research, Emerging Research Area Platform, Next Generation Health Cluster, Pretoria, Gauteng 0001, South Africa.,Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Pascaline N Fru
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Hazel Mufhandu
- Department of Microbiology, North West University, School of Biological Sciences, Mmabatho, North West 2735, South Africa
| | - Kabamba Alexandre
- Council for Scientific and Industrial Research, Emerging Research Area Platform, Next Generation Health Cluster, Pretoria, Gauteng 0001, South Africa
| |
Collapse
|
2
|
Xiang S, Ge C, Li S, Chen L, Wang L, Xu Y. In Situ Detection of Endotoxin in Bacteriostatic Process by SERS Chip Integrated Array Microchambers within Bioscaffold Nanostructures and SERS Tags. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28985-28992. [PMID: 32441909 DOI: 10.1021/acsami.0c04897] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In order to achieve real-time and in situ detection of endotoxin, which is an important and significant clinical test index, surface-enhanced Raman spectroscopy (SERS) chip integrated array microchambers within bioscaffold nanostructures and a SERS monitoring strategy were proposed in this paper. After sputtering of nanogold on the cicada wing, which was selected as a natural template, and polydimethylsiloxane bonding, array-type chambers within bioscaffold nanostructures were prepared for in situ bacterial culture and monitoring of endotoxin in the bacteriostasis process by SERS. Meanwhile, the SERS tag modified with the DNA aptamer was prepared and added into this complex biochemical reaction to further improve the sensitivity and selectivity. A new method for in situ detection of endotoxin was thus established. The detection time was shortened to 100 s, and the detection limit was as low as 6.25 ng/mL. Pseudomonas aeruginosa was cultured in situ in the chamber of the SERS chip with antimicrobial agents in 0-72 h. The endotoxin released in the antibacterial process was monitored by the designed SERS detection strategy. The results obtained by SERS analysis were consistent with those of the ELISA kit.
Collapse
Affiliation(s)
- Songtao Xiang
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing 400044, China
- School of Chemistry and Chemical Engineering, Chongqing University, Shapingba, Chongqing 400044, China
- International R & D Center of Micro-nano Systems and New Materials Technology, Chongqing University, Shapingba, Chongqing 400044, China
| | - Chuang Ge
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Shapingba, Chongqing 400030, China
| | - Shunbo Li
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing 400044, China
- School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing 400044, China
- International R & D Center of Micro-nano Systems and New Materials Technology, Chongqing University, Shapingba, Chongqing 400044, China
| | - Li Chen
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing 400044, China
- School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing 400044, China
- International R & D Center of Micro-nano Systems and New Materials Technology, Chongqing University, Shapingba, Chongqing 400044, China
| | - Li Wang
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing 400044, China
- School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing 400044, China
- International R & D Center of Micro-nano Systems and New Materials Technology, Chongqing University, Shapingba, Chongqing 400044, China
| | - Yi Xu
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing 400044, China
- School of Chemistry and Chemical Engineering, Chongqing University, Shapingba, Chongqing 400044, China
- School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing 400044, China
- International R & D Center of Micro-nano Systems and New Materials Technology, Chongqing University, Shapingba, Chongqing 400044, China
| |
Collapse
|
3
|
Ying G, Wang M, Yi Y, Chen J, Mei J, Zhang Y, Chen S. Construction and application of an electrochemical biosensor based on an endotoxin aptamer. Biotechnol Appl Biochem 2017; 65:323-327. [PMID: 28887814 DOI: 10.1002/bab.1610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/03/2017] [Indexed: 11/10/2022]
Abstract
An electrochemical biosensor that used an aptamer as a biological element was constructed to detect endotoxin. Biolayer interferometry was used to obtain the affinity constant of an aptamer for lipopolysaccharide, which had an equilibrium dissociation constant of 22.9 nM. The amine-terminated aptamer was then assembled on a gold electrode surface using 3-mercaptopropionic acid as an intermediate linker. The modification of the gold electrode was confirmed by cyclic voltammetry and electrochemical impedance spectroscopy. In the range of 0.001-1 EU/mL, the increase in electron transfer resistance of the biosensor was linear with the logarithmic value of the endotoxin concentration. The constructed biosensor exhibits sensitivity and a low limit of detection.
Collapse
Affiliation(s)
- GuoQing Ying
- College of Pharmaceutical Science, ZheJiang University, HangZhou, People's Republic of China.,College of Pharmaceutical Science, ZheJiang University of Technology, HangZhou, People's Republic of China
| | - MinJun Wang
- College of Pharmaceutical Science, ZheJiang University of Technology, HangZhou, People's Republic of China
| | - Yu Yi
- College of Pharmaceutical Science, ZheJiang University of Technology, HangZhou, People's Republic of China
| | - JianShu Chen
- College of Pharmaceutical Science, ZheJiang University of Technology, HangZhou, People's Republic of China
| | - JianFeng Mei
- College of Pharmaceutical Science, ZheJiang University of Technology, HangZhou, People's Republic of China
| | - YanLu Zhang
- College of Pharmaceutical Science, ZheJiang University of Technology, HangZhou, People's Republic of China
| | - ShuQing Chen
- College of Pharmaceutical Science, ZheJiang University, HangZhou, People's Republic of China
| |
Collapse
|
4
|
Ye H, Duan N, Wu S, Tan G, Gu H, Li J, Wang H, Wang Z. Orientation selection of broad-spectrum aptamers against lipopolysaccharides based on capture-SELEX by using magnetic nanoparticles. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2453-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|