1
|
Wang M, Jiang D, Lu X, Zong H, Zhuge B. Large Flux Supply of NAD(H) under Aerobic Conditions by Candida glycerinogenes. ACS Synth Biol 2024; 13:1716-1726. [PMID: 38733342 DOI: 10.1021/acssynbio.4c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
NAD is a redox coenzyme and is the center of energy metabolism. In metabolic engineering modifications, an insufficient NAD(H) supply often limits the accumulation of target products. In this study, Candida glycerinogenes was found to be able to supply NAD(H) in large fluxes, up to 7.6 times more than Saccharomyces cerevisiae in aerobic fermentation. Aerobic fermentation in a medium without amino nitrogen sources demonstrated that C. glycerinogenes NAD synthesis was not dependent on NAD precursors in the medium. Inhibition by antisense RNA and the detection of transcript levels indicated that the main NAD supply pathway is the de novo biosynthesis pathway. It was further demonstrated that NAD(H) supply was unaffected by changes in metabolic flow through C. glycerinogenes ΔGPD aerobic fermentation (80 g/L ethanol). In conclusion, the ability of C. glycerinogenes to supply NAD(H) in large fluxes provides a new approach to solving the NAD(H) supply problem in synthetic biology.
Collapse
Affiliation(s)
- Mengying Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Dongqi Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xinyao Lu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hong Zong
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Bin Zhuge
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Zhang Y, Yang M, Bao Y, Tao W, Tuo J, Liu B, Gan L, Fu S, Gong H. A genome-scale metabolic model of the effect of dissolved oxygen on 1,3-propanediol fermentation by Klebsiella pneumoniae. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02899-w. [PMID: 37403004 DOI: 10.1007/s00449-023-02899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
Although 1,3-propanediol (1,3-PD) is usually considered an anaerobic fermentation product from glycerol by Klebsiella pneumoniae, microaerobic conditions proved to be more conducive to 1,3-PD production. In this study, a genome-scale metabolic model (GSMM) specific to K. pneumoniae KG2, a high 1.3-PD producer, was constructed. The iZY1242 model contains 2090 reactions, 1242 genes and 1433 metabolites. The model was not only able to accurately characterise cell growth, but also accurately simulate the fed-batch 1,3-PD fermentation process. Flux balance analyses by iZY1242 was performed to dissect the mechanism of stimulated 1,3-PD production under microaerobic conditions, and the maximum yield of 1,3-PD on glycerol was 0.83 mol/mol under optimal microaerobic conditions. Combined with experimental data, the iZY1242 model is a useful tool for establishing the best conditions for microaeration fermentation to produce 1,3-PD from glycerol in K. pneumoniae.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Menglei Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Yangyang Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Weihua Tao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Jinyou Tuo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Boya Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Luxi Gan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Shuilin Fu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Heng Gong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
3
|
Dong S, Liu X, Chen T, Zhou X, Li S, Fu S, Gong H. Mutation of rpoS is Beneficial for Suppressing Organic Acid Secretion During 1,3-Propandiol Biosynthesis in Klebsiella pneumoniae. Curr Microbiol 2022; 79:218. [PMID: 35704098 DOI: 10.1007/s00284-022-02901-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 05/09/2022] [Indexed: 11/25/2022]
Abstract
In this study, to reduce the formation of organic acid during 1,3-propanediol biosynthesis in Klebsiella pneumoniae, a method combining UV mutagenesis and high-throughput screening with pH color plates was employed to obtain K. pneumoniae mutants. When compared with the parent strain, the total organic acid formation by the mutant decreased, whereas 1,3-propanediol biosynthesis increased after 24 h anaerobic shake flask culture. Subsequently, genetic changes in the mutant were analyzed by whole-genome sequencing and verified by signal gene deletion. Mutation of the rpoS gene was confirmed to contribute to the regulation of organic acid synthesis in K. pneumoniae. Besides, rpoS deletion eliminated the formation of 2,3-butanediol, the main byproduct produced during 1,3-propanediol fermentation, indicating the role of rpoS in metabolic regulation in K. pneumoniae. Thus, a K. pneumoniae mutant was developed, which could produce lower organic acid during 1,3-propanediol fermentation due to an rpoS mutation in this study.
Collapse
Affiliation(s)
- Shufan Dong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Xuxia Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Tianyu Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Xiaoqin Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Shengming Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Shuilin Fu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Heng Gong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
4
|
Wang X, Zhang L, Liang S, Yin Y, Wang P, Li Y, Chin WS, Xu J, Wen J. Enhancing the capability of Klebsiella pneumoniae to produce 1, 3-propanediol by overexpression and regulation through CRISPR-dCas9. Microb Biotechnol 2022; 15:2112-2125. [PMID: 35298861 PMCID: PMC9249332 DOI: 10.1111/1751-7915.14033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/06/2022] [Indexed: 11/30/2022] Open
Abstract
Klebsiella pneumoniae is a common strain of bacterial fermentation to produce 1, 3‐propanediol (1, 3‐PDO). In general, the production of 1, 3‐PDO by wild‐type K. pneumoniae is relatively low. Therefore, a new gene manipulation of K. pneumoniae was developed to improve the production of 1, 3‐PDO by overexpressing in the reduction pathway and attenuating the by‐products in the oxidation pathway. Firstly, dhaB and/or dhaT were overexpressed in the reduction pathway. Considering the cost of IPTG, the constitutive promoter P32 was selected to express the key gene. By comparing K.P. pET28a‐P32‐dhaT with the original strain, the production of 1, 3‐PDO was increased by 19.7%, from 12.97 to 15.53 g l−1 (in a 250 ml shaker flask). Secondly, three lldD and budC regulatory sites were selected in the by‐product pathway, respectively, using the CRISPR‐dCas9 system, and the optimal regulatory sites were selected following the 1, 3‐PDO production. As a result, the 1, 3‐PDO production by K.P. L1‐pRH2521 and K.P. B3‐pRH2521 reached up to 19.16 and 18.74 g l−1, which was increased by 47.7% and 44.5% respectively. Overexpressing dhaT and inhibiting expression of lldD and budC were combined to further enhance the ability of K. pneumoniae to produce 1, 3‐PDO. The 1, 3‐PDO production by K.P. L1‐B3‐PRH2521‐P32‐dhaT reached 57.85 g l−1 in a 7.5 l fermentation tank (with Na+ neutralizer), which is higher than that of the original strain. This is the first time that the 1, 3‐PDO production was improved in K. pneumoniae by overexpressing the key gene and attenuating by‐product synthesis in the CRISPR‐dCas9 system. This study reports an efficient approach to regulate the expression of genes in K. pneumoniae to increase the 1, 3‐PDO production, and such a strategy may be useful to modify other strains to produce valuable chemicals.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Institute of Materials Research and Engineering, Agency for Science, Technology and Research, #08-03, 2 Fusionopolis Way, Singapore, 138634, Singapore.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Lin Zhang
- Dalian Petrochemical Research Institute of Sinopec, Dalian, 116000, China
| | - Shaoxiong Liang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ying Yin
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Pan Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yicao Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Wee Shong Chin
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jianwei Xu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, #08-03, 2 Fusionopolis Way, Singapore, 138634, Singapore.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
5
|
Xie M, Lu X, Zong H, Zhuge B. Strengthening the TCA cycle to alleviate metabolic stress due to blocking by-products synthesis pathway in Klebsiella pneumoniae. FEMS Microbiol Lett 2020; 367:5903268. [PMID: 32901814 DOI: 10.1093/femsle/fnaa148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/06/2020] [Indexed: 11/14/2022] Open
Abstract
1,3-Propanediol (1,3-PDO) is an important synthetic monomer for the production of polytrimethylene terephthalate (PTT). Here, we engineered Klebsiella pneumoniae by a multi-strategy to improve 1,3-PDO production and reduce by-products synthesis. First, the 2,3-butanediol (2,3-BDO) synthesis pathway was blocked by deleting the budB gene, resulting in a 74% decrease of 2,3-BDO titer. The synthesis of lactate was decreased by 79% via deleting the ldhA gene, leading to a 10% increase of 1,3-PDO titer. Further, reducing ethanol synthesis by deleting the aldA gene led to a 64% decrease of ethanol titer, and the 1,3-PDO titer and yield on glycerol increased by 12 and 10%, respectively. Strengthening the TCA cycle by overexpressing the mdh gene improved 1,3-PDO synthesis effectively. Under 5-L fed-batch fermentation conditions, compared to wild type strain, the production of 2,3-BDO, lactate and ethanol in the mutant strain decreased by 73, 65 and 50%, respectively. Finally, the production of 1,3-PDO was 73.5 g/L with a molar yield of 0.67 mol/mol glycerol, improved 16% and 20%, respectively. This work provides a combined strategy for improving 1,3-PDO production by strengthening the TCA cycle to relieve metabolic stress by deleting genes of by-products synthesis, which was also beneficial for the extraction and separation of downstream products.
Collapse
Affiliation(s)
- Mengmeng Xie
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xinyao Lu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hong Zong
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Bin Zhuge
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Xu D, Jia Z, Zhang L, Fu S, Gong H. Analysis of the Growth and Metabolites of a Pyruvate Dehydrogenase Complex- Deficient Klebsiella pneumoniae Mutant in a Glycerol-Based Medium. J Microbiol Biotechnol 2020; 30:753-761. [PMID: 32482942 PMCID: PMC9728353 DOI: 10.4014/jmb.1801.01045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/01/2018] [Indexed: 12/15/2022]
Abstract
To determine the role of pyruvate dehydrogenase complex (PDHC) in Klebsiella pneumoniae, the growth and metabolism of PDHC-deficient mutant in glycerol-based medium were analyzed and compared with those of other strains. Under aerobic conditions, the PDHC activity was fourfold higher than that of pyruvate formate lyase (PFL), and blocking of PDHC caused severe growth defect and pyruvate accumulation, indicating that the carbon flux through pyruvate to acetyl coenzyme A mainly depended on PDHC. Under anaerobic conditions, although the PDHC activity was only 50% of that of PFL, blocking of PDHC resulted in more growth defect than blocking of PFL. Subsequently, combined with the requirement of CO2 and intracellular redox status, it was presumed that the critical role of PDHC was to provide NADH for the anaerobic growth of K. pneumoniae. This presumption was confirmed in the PDHC-deficient mutant by further blocking one of the formate dehydrogenases, FdnGHI. Besides, based on our data, it can also be suggested that an improvement in the carbon flux in the PFL-deficient mutant could be an effective strategy to construct highyielding 1,3-propanediol-producing K. pneumoniae strain.
Collapse
Affiliation(s)
- Danfeng Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Zongxiao Jia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Lijuan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Shuilin Fu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Heng Gong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| |
Collapse
|
7
|
Regulation of Pyruvate Formate Lyase-Deficient Klebsiella pneumoniae for Efficient 1,3-Propanediol Bioproduction. Curr Microbiol 2019; 77:55-61. [PMID: 31705389 DOI: 10.1007/s00284-019-01795-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/16/2019] [Indexed: 10/25/2022]
Abstract
Anaerobic growth defect of pyruvate formate lyase (PFL)-deficient Klebsiella pneumoniae limits its industrial application, and the reason for this growth defect was analyzed in this study. The obtained evidences, combined with normal intracellular redox status and no further inhibition by adhE deletion, strongly suggested that growth defect in PFL-deficient K. pneumoniae was probably caused by lack of carbon flux from pyruvate to acetyl-CoA (AcCoA). Correspondingly, the anaerobic growth of PFL-deficient K. pneumoniae was promoted by deletion of pdhR, a negative transcriptional regulator gene for AcCoA generation. Through the regulation of pdhR deletion, the PFL-deficient K. pneumoniae exhibited highly efficient 1,3-propanediol production. Besides, in a 2-L fed-batch fermentation process, the cell growth of PFL-deficient K. pneumoniae strain almost recovered, when compared with that of the normal strain, and the 1,3-propanediol yield increased by 14%, while the byproducts acetate and 2,3-butanediol contents decreased by 29% and 24%, respectively.
Collapse
|
8
|
Westbrook AW, Miscevic D, Kilpatrick S, Bruder MR, Moo-Young M, Chou CP. Strain engineering for microbial production of value-added chemicals and fuels from glycerol. Biotechnol Adv 2019; 37:538-568. [DOI: 10.1016/j.biotechadv.2018.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 10/03/2018] [Accepted: 10/10/2018] [Indexed: 12/22/2022]
|
9
|
Zhang L, Bao W, Wei R, Fu S, Gong H. Inactivating NADH:quinone oxidoreductases affects the growth and metabolism of Klebsiella pneumoniae. Biotechnol Appl Biochem 2018; 65:857-864. [PMID: 30063071 DOI: 10.1002/bab.1684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/22/2018] [Indexed: 11/10/2022]
Abstract
NADH:quinone oxidoreductases (NQOs) act as the electron entry sites in bacterial respiration and oxidize intracellular NADH that is essential for the synthesis of numerous molecules. Klebsiella pneumoniae contains three NQOs (NDH-1, NDH-2, and NQR). The effects of inactivating these NQOs, separately and together, on cell metabolism were investigated under different culture conditions. Defective growth was evident in NDH-1-NDH-2 double and NDH-1-NDH-2-NQR triple deficient mutants, which was probably due to damage to the respiratory chain. The results also showed that K. pneumoniae can flexibly use NQOs to maintain normal growth in single NQO-deficient mutants. And more interestingly, under aerobic conditions, inactivating NDH-1 resulted in a high intracellular NADH:NAD+ ratio, which was proven to be beneficial for 2,3-butanediol production. Compared with the parent strain, 2,3-butanediol production by the NDH-1-deficient mutant was increased by 46% and 62% in glycerol- and glucose-based media, respectively. Thus, our findings provide a practical strategy for metabolic engineering of respiratory chains to promote the biosynthesis of 2,3-butanediol in K. pneumoniae.
Collapse
Affiliation(s)
- Lijuan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Wenjing Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Renquan Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Shuilin Fu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Heng Gong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
10
|
|
11
|
Zhang Y, Jia Z, Lin J, Xu D, Fu S, Gong H. Deletingpckimproves growth and suppresses by-product formation during 1,3-propanediol fermentation byKlebsiella pneumoniae. J Appl Microbiol 2017. [DOI: 10.1111/jam.13518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yongqiang Zhang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Zongxiao Jia
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Jie Lin
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Danfeng Xu
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Shuilin Fu
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Heng Gong
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| |
Collapse
|
12
|
Metabolic engineering of Klebsiella pneumoniae based on in silico analysis and its pilot-scale application for 1,3-propanediol and 2,3-butanediol co-production. ACTA ACUST UNITED AC 2017; 44:431-441. [DOI: 10.1007/s10295-016-1898-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/23/2016] [Indexed: 11/26/2022]
Abstract
Abstract
Klebsiella pneumoniae naturally produces relatively large amounts of 1,3-propanediol (1,3-PD) and 2,3-butanediol (2,3-BD) along with various byproducts using glycerol as a carbon source. The ldhA and mdh genes in K. pneumoniae were deleted based on its in silico gene knockout simulation with the criteria of maximizing 1,3-PD and 2,3-BD production and minimizing byproducts formation and cell growth retardation. In addition, the agitation speed, which is known to strongly affect 1,3-PD and 2,3-BD production in Klebsiella strains, was optimized. The K. pneumoniae ΔldhA Δmdh strain produced 125 g/L of diols (1,3-PD and 2,3-BD) with a productivity of 2.0 g/L/h in the lab-scale (5-L bioreactor) fed-batch fermentation using high-quality guaranteed reagent grade glycerol. To evaluate the industrial capacity of the constructed K. pneumoniae ΔldhA Δmdh strain, a pilot-scale (5000-L bioreactor) fed-batch fermentation was carried out using crude glycerol obtained from the industrial biodiesel plant. The pilot-scale fed-batch fermentation of the K. pneumoniae ΔldhA Δmdh strain produced 114 g/L of diols (70 g/L of 1,3-PD and 44 g/L of 2,3-BD), with a yield of 0.60 g diols per gram glycerol and a productivity of 2.2 g/L/h of diols, which should be suitable for the industrial co-production of 1,3-PD and 2,3-BD.
Collapse
|
13
|
David Y, Oh YH, Baylon MG, Baritugo KA, Joo JC, Chae CG, Kim YJ, Park SJ. Microbial Production of 3-Hydroxypropionic Acid. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807833.ch14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Yokimiko David
- Myongji University; Department of Environmental Engineering and Energy; 116 Myongji-ro, Cheoin-gu Yongin Gyeonggido 449-728 Republic of Korea
| | - Young Hoon Oh
- Industrial Biochemicals Research Group, Research Center for Biobased Chemistry; Division of Convergence Chemistry, Korea Research Institute of Chemical Technology; P.O. Box 107, 141 Gajeong-ro Yuseong-gu Daejeon 305-600 Republic of Korea
| | - Mary Grace Baylon
- Myongji University; Department of Environmental Engineering and Energy; 116 Myongji-ro, Cheoin-gu Yongin Gyeonggido 449-728 Republic of Korea
| | - Kei-Anne Baritugo
- Myongji University; Department of Environmental Engineering and Energy; 116 Myongji-ro, Cheoin-gu Yongin Gyeonggido 449-728 Republic of Korea
| | - Jeong Chan Joo
- Industrial Biochemicals Research Group, Research Center for Biobased Chemistry; Division of Convergence Chemistry, Korea Research Institute of Chemical Technology; P.O. Box 107, 141 Gajeong-ro Yuseong-gu Daejeon 305-600 Republic of Korea
| | - Cheol Gi Chae
- Myongji University; Department of Environmental Engineering and Energy; 116 Myongji-ro, Cheoin-gu Yongin Gyeonggido 449-728 Republic of Korea
| | - You Jin Kim
- Myongji University; Department of Environmental Engineering and Energy; 116 Myongji-ro, Cheoin-gu Yongin Gyeonggido 449-728 Republic of Korea
| | - Si Jae Park
- Myongji University; Department of Environmental Engineering and Energy; 116 Myongji-ro, Cheoin-gu Yongin Gyeonggido 449-728 Republic of Korea
| |
Collapse
|
14
|
Lin J, Zhang Y, Xu D, Xiang G, Jia Z, Fu S, Gong H. Deletion of poxB, pta, and ackA improves 1,3-propanediol production by Klebsiella pneumoniae. Appl Microbiol Biotechnol 2015; 100:2775-84. [DOI: 10.1007/s00253-015-7237-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/29/2015] [Accepted: 12/07/2015] [Indexed: 12/24/2022]
|