1
|
Fritsche E, Haarmann-Stemmann T, Kapr J, Galanjuk S, Hartmann J, Mertens PR, Kämpfer AAM, Schins RPF, Tigges J, Koch K. Stem Cells for Next Level Toxicity Testing in the 21st Century. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006252. [PMID: 33354870 DOI: 10.1002/smll.202006252] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/13/2020] [Indexed: 06/12/2023]
Abstract
The call for a paradigm change in toxicology from the United States National Research Council in 2007 initiates awareness for the invention and use of human-relevant alternative methods for toxicological hazard assessment. Simple 2D in vitro systems may serve as first screening tools, however, recent developments infer the need for more complex, multicellular organotypic models, which are superior in mimicking the complexity of human organs. In this review article most critical organs for toxicity assessment, i.e., skin, brain, thyroid system, lung, heart, liver, kidney, and intestine are discussed with regards to their functions in health and disease. Embracing the manifold modes-of-action how xenobiotic compounds can interfere with physiological organ functions and cause toxicity, the need for translation of such multifaceted organ features into the dish seems obvious. Currently used in vitro methods for toxicological applications and ongoing developments not yet arrived in toxicity testing are discussed, especially highlighting the potential of models based on embryonic stem cells and induced pluripotent stem cells of human origin. Finally, the application of innovative technologies like organs-on-a-chip and genome editing point toward a toxicological paradigm change moves into action.
Collapse
Affiliation(s)
- Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
- Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | | | - Julia Kapr
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Saskia Galanjuk
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Julia Hartmann
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Peter R Mertens
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, Magdeburg, 39106, Germany
| | - Angela A M Kämpfer
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Julia Tigges
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Katharina Koch
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| |
Collapse
|
2
|
Lacroix G, Koch W, Ritter D, Gutleb AC, Larsen ST, Loret T, Zanetti F, Constant S, Chortarea S, Rothen-Rutishauser B, Hiemstra PS, Frejafon E, Hubert P, Gribaldo L, Kearns P, Aublant JM, Diabaté S, Weiss C, de Groot A, Kooter I. Air-Liquid Interface In Vitro Models for Respiratory Toxicology Research: Consensus Workshop and Recommendations. ACTA ACUST UNITED AC 2018; 4:91-106. [PMID: 32953944 PMCID: PMC7500038 DOI: 10.1089/aivt.2017.0034] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In vitro air-liquid interface (ALI) cell culture models can potentially be used to assess inhalation toxicology endpoints and are usually considered, in terms of relevancy, between classic (i.e., submerged) in vitro models and animal-based models. In some situations that need to be clearly defined, ALI methods may represent a complement or an alternative option to in vivo experimentations or classic in vitro methods. However, it is clear that many different approaches exist and that only very limited validation studies have been carried out to date. This means comparison of data from different methods is difficult and available methods are currently not suitable for use in regulatory assessments. This is despite inhalation toxicology being a priority area for many governmental organizations. In this setting, a 1-day workshop on ALI in vitro models for respiratory toxicology research was organized in Paris in March 2016 to assess the situation and to discuss what might be possible in terms of validation studies. The workshop was attended by major parties in Europe and brought together more than 60 representatives from various academic, commercial, and regulatory organizations. Following plenary, oral, and poster presentations, an expert panel was convened to lead a discussion on possible approaches to validation studies for ALI inhalation models. A series of recommendations were made and the outcomes of the workshop are reported.
Collapse
Affiliation(s)
- Ghislaine Lacroix
- Chronic Risks Division, Institut National de l'Environnement Industriel et des RISques, Verneuil-en-Halatte, France
| | - Wolfgang Koch
- In Vitro und Mechanistische Toxikologie, Fraunhofer ITEM, Hannover, Germany
| | - Detlef Ritter
- In Vitro und Mechanistische Toxikologie, Fraunhofer ITEM, Hannover, Germany
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Søren Thor Larsen
- Inhalation Toxicology Group, National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Thomas Loret
- Chronic Risks Division, Institut National de l'Environnement Industriel et des RISques, Verneuil-en-Halatte, France
| | - Filippo Zanetti
- Systems Toxicology Department, Philip Morris International R&D, Neuchâtel, Switzerland
| | | | - Savvina Chortarea
- BioNanomaterials, Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland.,Laboratory for Materials-Biology Interactions, EMPA, Swiss Federal Laboratories for Materials, Science and Technology, St Gallen, Switzerland
| | | | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Emeric Frejafon
- Chronic Risks Division, Institut National de l'Environnement Industriel et des RISques, Verneuil-en-Halatte, France
| | - Philippe Hubert
- Chronic Risks Division, Institut National de l'Environnement Industriel et des RISques, Verneuil-en-Halatte, France
| | - Laura Gribaldo
- Directorate F-Health, Consumers and Reference Materials Chemicals Safety and Alternative Methods Unit (F.3), EURL ECVAM, JRC, Ispra, Italy
| | - Peter Kearns
- Environment, Health and Safety Division, OECD, Paris, France
| | - Jean-Marc Aublant
- European Affairs and Standardization, Laboratoire National de Métrologie et d'Essais, Paris, France
| | - Silvia Diabaté
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Carsten Weiss
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Antoinette de Groot
- Toxicological and Environmental Risk Assessment (TERA) Department, Solvay, Brussels, Belgium
| | - Ingeborg Kooter
- Department of Circular Environment and Environment (CEE), TNO, Utrecht, The Netherlands
| |
Collapse
|
3
|
Human lung epithelial cell cultures for analysis of inhaled toxicants: Lessons learned and future directions. Toxicol In Vitro 2017; 47:137-146. [PMID: 29155131 DOI: 10.1016/j.tiv.2017.11.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 09/28/2017] [Accepted: 11/14/2017] [Indexed: 01/01/2023]
Abstract
The epithelium that covers the conducting airways and alveoli is a primary target for inhaled toxic substances, and therefore a focus in inhalation toxicology. The increasing concern about the use of animal models has stimulated the development of in vitro cell culture models for analysis of the biological effects of inhaled toxicants. However, the validity of the current in vitro models and their acceptance by regulatory authorities as an alternative to animal models is a reason for concern, and requires a critical review. In this review, focused on human lung epithelial cell cultures as a model for inhalation toxicology, we discuss the choice of cells for these models, the cell culture system used, the method of exposure as well as the various read-outs to assess the cellular response. We argue that rapid developments in the 3D culture of primary epithelial cells, the use of induced pluripotent stem cells for generation of lung epithelial cells and the development of organ-on-a-chip technology are among the important developments that will allow significant advances in this field. Furthermore, we discuss the various routes of application of inhaled toxicants by air-liquid interface models as well as the vast array of read-outs that may provide essential information. We conclude that close collaboration between researchers from various disciplines is essential for development of valid methods that are suitable for replacement of animal studies for inhalation toxicology.
Collapse
|
5
|
Sunitha MM, Srikanth L, Santhosh Kumar P, Chandrasekhar C, Sarma PVGK. In vitro differentiation potential of human haematopoietic CD34(+) cells towards pancreatic β-cells. Cell Biol Int 2016; 40:1084-93. [PMID: 27514733 DOI: 10.1002/cbin.10654] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/17/2016] [Indexed: 11/06/2022]
Abstract
Haematopoietic stem cells (HSCs) possess multipotent ability to differentiate into various types of cells on providing appropriate niche. In the present study, the differentiating potential of human HSCs into β-cells of islets of langerhans was explored. Human HSCs were apheretically isolated from a donor and cultured. Phenotypic characterization of CD34 glycoprotein in the growing monolayer HSCs was confirmed by immunocytochemistry and flow cytometry techniques. HSCs were induced by selection with beta cell differentiating medium (BDM), which consists of epidermal growth factor (EGF), fibroblast growth factor (FGF), transferrin, Triiodo-l-Tyronine, nicotinamide and activin A. Distinct morphological changes of differentiated cells were observed on staining with dithizone (DTZ) and expression of PDX1, insulin and synaptophysin was confirmed by immunocytochemistry. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed distinct expression of specific β-cell markers, pancreatic and duodenal homeobox-1 (PDX1), glucose transporter-2 (GLUT-2), synaptophysin (SYP) and insulin (INS) in these differentiated cells compared to HSCs. Further, these cells exhibited elevated expression of INS gene at 10 mM glucose upon inducing with different glucose concentrations. The prominent feature of the obtained β-cells was the presence of glucose sensors, which was determined by glucokinase activity and high glucokinase activity compared with CD34(+) stem cells. These findings illustrate the differentiation of CD34(+) HSCs into β-cells of islets of langerhans.
Collapse
Affiliation(s)
- Manne Mudhu Sunitha
- Stem Cell laboratory, Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, 517 507, Andhra Pradesh, India
| | - Lokanathan Srikanth
- Stem Cell laboratory, Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, 517 507, Andhra Pradesh, India
| | - Pasupuleti Santhosh Kumar
- Stem Cell laboratory, Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, 517 507, Andhra Pradesh, India
| | - Chodimella Chandrasekhar
- Department of Haematology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | | |
Collapse
|