• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4619801)   Today's Articles (3126)   Subscriber (49403)
For: Wu X, Zhang L, Jin X, Fang Y, Zhang K, Qi L, Zheng D. Deletion of JJJ1 improves acetic acid tolerance and bioethanol fermentation performance of Saccharomyces cerevisiae strains. Biotechnol Lett 2016;38:1097-106. [PMID: 27067354 DOI: 10.1007/s10529-016-2085-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/17/2016] [Indexed: 11/26/2022]
Number Cited by Other Article(s)
1
Chen Y, Yang Y, Cai W, Zeng J, Liu N, Wan Y, Fu G. Research progress of anti-environmental factor stress mechanism and anti-stress tolerance way of Saccharomyces cerevisiae during the brewing process. Crit Rev Food Sci Nutr 2023;63:12308-12323. [PMID: 35848108 DOI: 10.1080/10408398.2022.2101090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
2
Yang P, Chen J, Wu W, Jiang S, Deng Y, Lu J, Wang H, Zhou Y, Geng Y, Zheng Z. Saccharomyces cerevisiae MET5DeltaSIZ1Delta enhancing organic acid tolerance with XYL1 and XYL2 integration for ethanol yield improvement in the presence of xylose and low pH value. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
3
How adaptive laboratory evolution can boost yeast tolerance to lignocellulosic hydrolyses. Curr Genet 2022;68:319-342. [PMID: 35362784 DOI: 10.1007/s00294-022-01237-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/01/2022] [Accepted: 03/06/2022] [Indexed: 12/25/2022]
4
Li B, Liu N, Zhao X. Response mechanisms of Saccharomyces cerevisiae to the stress factors present in lignocellulose hydrolysate and strategies for constructing robust strains. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022;15:28. [PMID: 35292082 PMCID: PMC8922928 DOI: 10.1186/s13068-022-02127-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/01/2022] [Indexed: 11/19/2022]
5
Data mining of Saccharomyces cerevisiae mutants engineered for increased tolerance towards inhibitors in lignocellulosic hydrolysates. Biotechnol Adv 2022;57:107947. [DOI: 10.1016/j.biotechadv.2022.107947] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022]
6
Guaragnella N, Bettiga M. Acetic acid stress in budding yeast: From molecular mechanisms to applications. Yeast 2021;38:391-400. [PMID: 34000094 PMCID: PMC8361955 DOI: 10.1002/yea.3651] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/13/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022]  Open
7
Stojiljkovic M, Foulquié-Moreno MR, Thevelein JM. Polygenic analysis of very high acetic acid tolerance in the yeast Saccharomyces cerevisiae reveals a complex genetic background and several new causative alleles. BIOTECHNOLOGY FOR BIOFUELS 2020;13:126. [PMID: 32695222 PMCID: PMC7364526 DOI: 10.1186/s13068-020-01761-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
8
Ndukwe JK, Aliyu GO, Onwosi CO, Chukwu KO, Ezugworie FN. Mechanisms of weak acid-induced stress tolerance in yeasts: Prospects for improved bioethanol production from lignocellulosic biomass. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
9
Guan N, Liu L. Microbial response to acid stress: mechanisms and applications. Appl Microbiol Biotechnol 2020;104:51-65. [PMID: 31773206 PMCID: PMC6942593 DOI: 10.1007/s00253-019-10226-1] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023]
10
Kim JE, Jang IS, Son SH, Ko YJ, Cho BK, Kim SC, Lee JY. Tailoring the Saccharomyces cerevisiae endoplasmic reticulum for functional assembly of terpene synthesis pathway. Metab Eng 2019;56:50-59. [DOI: 10.1016/j.ymben.2019.08.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/17/2019] [Accepted: 08/17/2019] [Indexed: 10/26/2022]
11
Pandey AK, Kumar M, Kumari S, Kumari P, Yusuf F, Jakeer S, Naz S, Chandna P, Bhatnagar I, Gaur NA. Evaluation of divergent yeast genera for fermentation-associated stresses and identification of a robust sugarcane distillery waste isolate Saccharomyces cerevisiae NGY10 for lignocellulosic ethanol production in SHF and SSF. BIOTECHNOLOGY FOR BIOFUELS 2019;12:40. [PMID: 30858877 PMCID: PMC6391804 DOI: 10.1186/s13068-019-1379-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
12
Yang H, Zong X, Xu Y, Zeng Y, Zhao H. Wheat gluten hydrolysates and their fractions improve multiple stress tolerance and ethanol fermentation performances of yeast during very high-gravity fermentation. INDUSTRIAL CROPS AND PRODUCTS 2019;128:282-289. [DOI: 10.1016/j.indcrop.2018.11.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
13
Zhang MM, Xiong L, Tang YJ, Mehmood MA, Zhao ZK, Bai FW, Zhao XQ. Enhanced acetic acid stress tolerance and ethanol production in Saccharomyces cerevisiae by modulating expression of the de novo purine biosynthesis genes. BIOTECHNOLOGY FOR BIOFUELS 2019;12:116. [PMID: 31168321 PMCID: PMC6509782 DOI: 10.1186/s13068-019-1456-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/02/2019] [Indexed: 05/08/2023]
14
Guo ZP, Khoomrung S, Nielsen J, Olsson L. Changes in lipid metabolism convey acid tolerance in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2018;11:297. [PMID: 30450126 PMCID: PMC6206931 DOI: 10.1186/s13068-018-1295-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/15/2018] [Indexed: 05/24/2023]
15
Palma M, Guerreiro JF, Sá-Correia I. Adaptive Response and Tolerance to Acetic Acid in Saccharomyces cerevisiae and Zygosaccharomyces bailii: A Physiological Genomics Perspective. Front Microbiol 2018. [PMID: 29515554 PMCID: PMC5826360 DOI: 10.3389/fmicb.2018.00274] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]  Open
16
Zhang M, Zhang K, Mehmood MA, Zhao ZK, Bai F, Zhao X. Deletion of acetate transporter gene ADY2 improved tolerance of Saccharomyces cerevisiae against multiple stresses and enhanced ethanol production in the presence of acetic acid. BIORESOURCE TECHNOLOGY 2017;245:1461-1468. [PMID: 28606754 DOI: 10.1016/j.biortech.2017.05.191] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/27/2017] [Accepted: 05/29/2017] [Indexed: 05/24/2023]
17
Geng P, Zhang L, Shi GY. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae. World J Microbiol Biotechnol 2017;33:94. [PMID: 28405910 DOI: 10.1007/s11274-017-2259-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 04/01/2017] [Indexed: 12/31/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA