1
|
Saadh MJ, Hussain QM, Alazzawi TS, Fahdil AA, Athab ZH, Yarmukhamedov B, Al-Nuaimi AMA, Alsaikhan F, Farhood B. MicroRNA as Key Players in Hepatocellular Carcinoma: Insights into Their Role in Metastasis. Biochem Genet 2025; 63:1014-1062. [PMID: 39103713 DOI: 10.1007/s10528-024-10897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Liver cancer or hepatocellular carcinoma (HCC) remains the most common cancer in global epidemiology. Both the frequency and fatality of this malignancy have shown an upward trend over recent decades. Liver cancer is a significant concern due to its propensity for both intrahepatic and extrahepatic metastasis. Liver cancer metastasis is a multifaceted process characterized by cell detachment from the bulk tumor, modulation of cellular motility and invasiveness, enhanced proliferation, avoidance of the immune system, and spread either via lymphatic or blood vessels. MicroRNAs (miRNAs) are small non-coding ribonucleic acids (RNAs) playing a crucial function in the intricate mechanisms of tumor metastasis. A number of miRNAs can either increase or reduce metastasis via several mechanisms, such as control of motility, proliferation, attack by the immune system, cancer stem cell properties, altering the microenvironment, and the epithelial-mesenchymal transition (EMT). Besides, two other types of non-coding RNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) can competitively bind to endogenous miRNAs. This competition results in the impaired ability of the miRNAs to inhibit the expression of the specific messenger RNAs (mRNAs) that are targeted. Increasing evidence has shown that the regulatory axis comprising circRNA/lncRNA-miRNA-mRNA is correlated with the regulation of HCC metastasis. This review seeks to present a thorough summary of recent research on miRNAs in HCC, and their roles in the cellular processes of EMT, invasion and migration, as well as the metastasis of malignant cells. Finally, we discuss the function of the lncRNA/circRNA-miRNA-mRNA network as a crucial modulator of carcinogenesis and the regulation of signaling pathways or genes that are relevant to the metastasis of HCC. These findings have the potential to offer valuable insight into the discovery of novel therapeutic approaches for management of liver cancer metastasis.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Tuqa S Alazzawi
- College of Dentist, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Ali A Fahdil
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Bekhzod Yarmukhamedov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Zenlander R, Salter H, Gilg S, Eggertsen G, Stål P. MicroRNAs as Plasma Biomarkers of Hepatocellular Carcinoma in Patients with Liver Cirrhosis-A Cross-Sectional Study. Int J Mol Sci 2024; 25:2414. [PMID: 38397091 PMCID: PMC10888674 DOI: 10.3390/ijms25042414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Ultrasound screening for hepatocellular carcinoma (HCC) in patients with liver cirrhosis has a poor sensitivity for small tumors. Circulating microRNAs (miRNAs) have been explored as HCC biomarkers, but results are diverging. Here, we evaluate if miRNAs up-regulated in HCC tissue can be detected in plasma and used as screening biomarkers for HCC. In this cross-sectional study, plasma, HCC tissue and surrounding non-tumorous liver tissue were collected from liver resections. Tissue miRNAs were identified and quantitated by RNA-sequencing analysis, and the fold-changes between HCC and surrounding liver tissue were calculated. The miRNAs up-regulated in HCCs were then re-analyzed in plasma from the same patients, and the miRNAs with the highest plasma levels were subsequently measured in plasma from an independent cohort of patients with cirrhosis or HCC. In tissues from 84 resected patients, RNA-sequencing detected 197 differentially expressed miRNAs, 40 of which had a raw count above 200 and were analyzed in plasma from the same cohort. Thirty-one miRNAs were selected for further analysis in 200 patients with HCC or cirrhosis. Of these, eleven miRNAs were significantly increased in HCC as compared to cirrhosis patients. Only miR-93-5p and miR-151a-3p were significantly associated with HCC, with an AUC of 0.662. In comparison, alpha-fetoprotein and des-gamma-carboxy prothrombin yielded an AUC of 0.816, which increased to 0.832 if miR-93-5p and miR-151a-3p were added. When including sex and age, the addition of miR-93-5p and miR-151a-3p did not further improve the AUC (from 0.910 to 0.911). In conclusion, micro-RNAs up-regulated in HCCs are detectable in plasma but have a poor performance as screening biomarkers of HCC.
Collapse
Affiliation(s)
- Robin Zenlander
- Department of Clinical Chemistry, Karolinska University Hospital, 141 86 Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Stockholm, Sweden
- Department of Medicine, Huddinge, Karolinska Institutet, 141 86 Stockholm, Sweden (P.S.)
| | - Hugh Salter
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Stefan Gilg
- Department of Medicine, Huddinge, Karolinska Institutet, 141 86 Stockholm, Sweden (P.S.)
| | - Gösta Eggertsen
- Department of Clinical Chemistry, Karolinska University Hospital, 141 86 Stockholm, Sweden
- Department of Medicine, Huddinge, Karolinska Institutet, 141 86 Stockholm, Sweden (P.S.)
| | - Per Stål
- Department of Medicine, Huddinge, Karolinska Institutet, 141 86 Stockholm, Sweden (P.S.)
- Division of Hepatology, Department of Upper GI Diseases, Karolinska University Hospital, 141 86 Stockholm, Sweden
| |
Collapse
|
3
|
Yüregir Y, Kaçaroğlu D, Yaylacı S. Regulation of Hepatocellular Carcinoma Epithelial-Mesenchymal Transition Mechanism and Targeted Therapeutic Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1450:93-102. [PMID: 37452258 DOI: 10.1007/5584_2023_781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Hepatocellular carcinoma (HCC) is a primary liver malignancy that accounts for the majority of liver cancer cases, with multiple risk factors including chronic hepatitis B and C infections, alcohol abuse, and non-alcoholic fatty liver disease (NAFLD). Despite advancements in diagnosis and treatment, the survival rate of patients with advanced HCC remains low, creating an urgent need for new therapeutic targets and strategies.One biological process crucial to HCC progression is the epithelial-mesenchymal transition (EMT). EMT is a process that enables epithelial cells to acquire mesenchymal properties, including motility and invasiveness, by losing their cell-cell adhesion. Various signaling pathways, including TGF-β, Wnt/β-catenin, and Notch, have been implicated in regulating EMT in HCC.To inhibit EMT, targeted therapeutic approaches have been developed, and preclinical studies suggest that the inhibition of the TGF-β, Wnt/β-catenin, and Notch signaling pathways is promising. TGF-β receptor inhibitors, Wnt/β-catenin pathway inhibitors, and gamma-secretase inhibitors have shown efficacy in preclinical studies by inhibiting EMT and reducing tumor growth in HCC models. However, further clinical studies are necessary to determine their effectiveness in human patients.In addition to these approaches, further research is needed to identify other novel therapeutic targets and develop new treatment strategies for HCC. This review emphasizes the critical role of EMT in HCC progression and highlights the potential of targeting the TGF-β, Wnt/β-catenin, and Notch signaling pathways to inhibit EMT and reduce tumor growth in HCC. Future studies and clinical trials are necessary to validate these therapeutic strategies and develop effective treatments for HCC.
Collapse
Affiliation(s)
- Yelda Yüregir
- Molecular Biology and Genetics Department, İhsan Doğramacı Bilkent University, Ankara, Turkey
| | - Demet Kaçaroğlu
- Faculty of Medicine, Medical Biology Department, Lokman Hekim University, Ankara, Turkey
| | - Seher Yaylacı
- Faculty of Medicine, Medical Biology Department, Lokman Hekim University, Ankara, Turkey.
| |
Collapse
|
4
|
Tan C, Shi W, Zhang Y, Liu C, Hu T, Chen D, Huang J. MiR-93-5p inhibits retinal neurons apoptosis by regulating PDCD4 in acute ocular hypertension model. Life Sci Alliance 2023; 6:e202201732. [PMID: 37308277 PMCID: PMC10262076 DOI: 10.26508/lsa.202201732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/14/2023] Open
Abstract
The present study focused on the effect of miR-93-5p on apoptosis of retinal neurons in acute ocular hypertension (AOH) model by regulating PDCD4 and explored its related mechanism. We detected that miR-93-5p expression was decreased and PDCD4 expression was increased in the AOH retina by qRT-PCR. Therefore, we explored the role of miR-93-5p and PDCD4. MiR-93-5p overexpression inhibited the apoptosis of retinal neurons and the expression of PDCD4 in vivo and in vitro. Inhibiting the expression of PDCD4 via transfected interfering RNA decreased the apoptosis of retinal cells and increased the expression of PI3K/Akt pathway-related proteins in vitro. However, the addition of PI3K protein inhibitor LY294002 reversed this effect, leading to a decrease of PI3K/Akt pathway protein expression and an increase of apoptosis-related protein Bax/Bcl-2 expression ratio. Finally, up-regulating miR-93-5p or down-regulating PDCD4 increased the expression of PI3K/Akt pathway protein in vivo. In conclusion, under the condition of AOH injury, miR-93-5p-inhibiting PDCD4 expression reduced the apoptosis of retinal neurons by activating PI3K/Akt pathway.
Collapse
Affiliation(s)
- Cheng Tan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
- School of Basic Medical Sciences, Hunan University of Medicine, Huaihua, China
| | - Wenjia Shi
- Department of Human Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yun Zhang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Can Liu
- Department of Human Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Tu Hu
- Hunan Key Laboratory of Ophthalmology, Changsha, China
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Dan Chen
- Department of Human Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Jufang Huang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
| |
Collapse
|
5
|
Alqurashi YE, Al-Hetty HRAK, Ramaiah P, Fazaa AH, Jalil AT, Alsaikhan F, Gupta J, Ramírez-Coronel AA, Tayyib NA, Peng H. Harnessing function of EMT in hepatocellular carcinoma: From biological view to nanotechnological standpoint. ENVIRONMENTAL RESEARCH 2023; 227:115683. [PMID: 36933639 DOI: 10.1016/j.envres.2023.115683] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 05/08/2023]
Abstract
Management of cancer metastasis has been associated with remarkable reduction in progression of cancer cells and improving survival rate of patients. Since 90% of mortality are due to cancer metastasis, its suppression can improve ability in cancer fighting. The EMT has been an underlying cause in increasing cancer migration and it is followed by mesenchymal transformation of epithelial cells. HCC is the predominant kind of liver tumor threatening life of many people around the world with poor prognosis. Increasing patient prognosis can be obtained via inhibiting tumor metastasis. HCC metastasis modulation by EMT and HCC therapy by nanoparticles are discussed here. First of all, EMT happens during progression and advanced stages of HCC and therefore, its inhibition can reduce tumor malignancy. Moreover, anti-cancer compounds including all-trans retinoic acid and plumbaging, among others, have been considered as inhibitors of EMT. The EMT association with chemoresistance has been evaluated. Moreover, ZEB1/2, TGF-β, Snail and Twist are EMT modulators in HCC and enhancing cancer invasion. Therefore, EMT mechanism and related molecular mechanisms in HCC are evaluated. The treatment of HCC has not been only emphasized on targeting molecular pathways with pharmacological compounds and since drugs have low bioavailability, their targeted delivery by nanoparticles promotes HCC elimination. Moreover, nanoparticle-mediated phototherapy impairs tumorigenesis in HCC by triggering cell death. Metastasis of HCC and even EMT mechanism can be suppressed by cargo-loaded nanoparticles.
Collapse
Affiliation(s)
- Yaser E Alqurashi
- Department of Biology, College of Science Al-zulfi, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | | | | | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U. P., India
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Hu Peng
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
6
|
Dong ZR, Cai JB, Shi GM, Yang YF, Huang XY, Zhang C, Dong RZ, Wei CY, Li T, Ke AW, Fan J. Oncogenic miR-93-5p/Gal-9 axis drives CD8 (+) T-cell inactivation and is a therapeutic target for hepatocellular carcinoma immunotherapy. Cancer Lett 2023; 564:216186. [PMID: 37105392 DOI: 10.1016/j.canlet.2023.216186] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023]
Abstract
Evading immune destruction is an emerging hallmark of cancer and a potential key step in tumorigenesis. Immune checkpoint blocker (ICB)-based combination therapies revolutionize the landscape of systemic therapy for HCC. However, the molecular underpinnings governing immune evasion and responses remain unclear. Our study aims to find new regulatory molecules that drive HCC immune escape and tumorigenesis and find new promising immunotherapeutic approaches for HCC. In our study, laser capture microdissection (LCM) and miRNA sequencing combined with in vitro and in vivo experiments identified miR-93-5p as a crucial initiating oncogene during liver progenitor cell (LPC) malignant transformation and immune escape. Mechanistically, miR-93-5p could directly target canonical tumour suppressors such as APC to promote LPC malignant transformation and hepatocarcinogenesis. More importantly, miR-93-5p could induce deviant GAL-9 augmentation to inactivate infiltrated CD8(+) T cells and induce immune evasion by targeting several epigenetic regulators, such as AEBP2, and then regulating H3K4me3/H3K27me3 bivalency. Experiments in C57BL/6 mice demonstrated that blockade of Gal-9 abrogated miR-93-5p-induced HCC progression and improved their prognosis. Clinically, we identified a unique subtype of HCC closely associated with high GAL-9 expression and anti-PD1 treatment resistance. Our study highlights the pivotal role of the miR-93-5p/Gal-9 axis in driving HCC immune escape and tumorigenesis. Blocking GAL-9 is an effective and promising immunotherapeutic approach for HCC.
Collapse
Affiliation(s)
- Zhao-Ru Dong
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250012, China; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, China.
| | - Jia-Bin Cai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, China
| | - Guo-Ming Shi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, China
| | - Ya-Fei Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Xiao-Yong Huang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, China
| | - Chi Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, China
| | - Rui-Zhao Dong
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, China
| | - Chuan-Yuan Wei
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, China
| | - Tao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250012, China.
| | - Ai-Wu Ke
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, China.
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, China.
| |
Collapse
|
7
|
Hussen BM, Abdullah SR, Rasul MF, Jawhar ZH, Faraj GSH, Kiani A, Taheri M. MiRNA-93: a novel signature in human disorders and drug resistance. Cell Commun Signal 2023; 21:79. [PMID: 37076893 PMCID: PMC10114484 DOI: 10.1186/s12964-023-01106-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/18/2023] [Indexed: 04/21/2023] Open
Abstract
miRNA-93 is a member of the miR-106b-25 family and is encoded by a gene on chromosome 7q22.1. They play a role in the etiology of various diseases, including cancer, Parkinson's disease, hepatic injury, osteoarthritis, acute myocardial infarction, atherosclerosis, rheumatoid arthritis, and chronic kidney disease. Different studies have found that this miRNA has opposing roles in the context of cancer. Recently, miRNA-93 has been downregulated in breast cancer, gastric cancer, colorectal cancer, pancreatic cancer, bladder cancer, cervical cancer, and renal cancer. However, miRNA-93 is up-regulated in a wide variety of malignancies, such as lung, colorectal, glioma, prostate, osteosarcoma, and hepatocellular carcinoma. The aim of the current review is to provide an overview of miRNA-93's function in cancer disorder progression and non-cancer disorders, with a focus on dysregulated signaling pathways. We also give an overview of this miRNA's function as a biomarker of prognosis in cancer and emphasize how it contributes to drug resistance based on in vivo, in vitro, and human studies. Video Abstract.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Zanko Hassan Jawhar
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, Iraq
| | - Arda Kiani
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Wang X, Li F, Cheng J, Hou N, Pu Z, Zhang H, Chen Y, Huang C. MicroRNA-17 Family Targets RUNX3 to Increase Proliferation and Migration of Hepatocellular Carcinoma. Crit Rev Eukaryot Gene Expr 2023; 33:71-84. [PMID: 37017671 DOI: 10.1615/critreveukaryotgeneexpr.v33.i3.70] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one common cancer in the world. Previous studies have shown that miR-17 family members are elevated in most tumors and promote tumor progression. However, there is no comprehensive analysis of the expression and functional mechanism of the microRNA-17 (miR-17) family in HCC. The aim of this study is to comprehensively analyze the function of the miR-17 family in HCC and the molecular mechanism of its role. Bioinfoimatics analysis of the miR-17 family expression profile and its relationship to clinical significance using The Cancer Genome Atlas (TCGA) database, and this result was confirmed using quantitative real-time polymerase chain reaction. miR-17 family members were tested for functional effects through transfection of miRNA precursors and inhibitors, and monitoring cell viability and migration by cell count and wound healing assays. In addition, we using dual-luciferase assay and Western blot demonstrated the targeting relationship between the miRNA-17 family and RUNX3. These members of miR-17 family were highly expressed in HCC tissues, and the overexpression of the miR-17 family promoted the proliferation and migration of SMMC-7721 cells, whereas treatment with anti-miR17 inhibitors caused the opposite effects. Notably, we also found that inhibitors anti-each member of miR-17 can suppress the expression of the entire family member. In addition, they can bind to the 3' untranslated region of RUNX3 to regulate its expression at the translational level. Our results proved that miR-17 family has oncogenic characteristics, overexpression every member of the family contributed to HCC cell proliferation and migration by reducing the translation of RUNX3.
Collapse
Affiliation(s)
- Xiaofei Wang
- Biomedical Experimental Center, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Fang Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Ni Hou
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Zhiying Pu
- College of Life Science and Food Engineering, Shaanxi Xueqian Normal University, Xi'an 710021, Shaanxi, China
| | - Hua Zhang
- First Affiliated Hospital of Xi'an Medical College, Xi'an 710077, Shaanxi, China
| | - Yanke Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Chen Huang
- Biomedical Experimental Center, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China; Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China; Environment and Genes Related to Diseases Key Laboratory of Education Ministry, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
9
|
Barzaman K, Vafaei R, Samadi M, Kazemi MH, Hosseinzadeh A, Merikhian P, Moradi-Kalbolandi S, Eisavand MR, Dinvari H, Farahmand L. Anti-cancer therapeutic strategies based on HGF/MET, EpCAM, and tumor-stromal cross talk. Cancer Cell Int 2022; 22:259. [PMID: 35986321 PMCID: PMC9389806 DOI: 10.1186/s12935-022-02658-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 07/19/2022] [Indexed: 02/08/2023] Open
Abstract
As an intelligent disease, tumors apply several pathways to evade the immune system. It can use alternative routes to bypass intracellular signaling pathways, such as nuclear factor-κB (NF-κB), Wnt, and mitogen-activated protein (MAP)/phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR). Therefore, these mechanisms lead to therapeutic resistance in cancer. Also, these pathways play important roles in the proliferation, survival, migration, and invasion of cells. In most cancers, these signaling pathways are overactivated, caused by mutation, overexpression, etc. Since numerous molecules share these signaling pathways, the identification of key molecules is crucial to achieve favorable consequences in cancer therapy. One of the key molecules is the mesenchymal-epithelial transition factor (MET; c-Met) and its ligand hepatocyte growth factor (HGF). Another molecule is the epithelial cell adhesion molecule (EpCAM), which its binding is hemophilic. Although both of them are involved in many physiologic processes (especially in embryonic stages), in some cancers, they are overexpressed on epithelial cells. Since they share intracellular pathways, targeting them simultaneously may inhibit substitute pathways that tumor uses to evade the immune system and resistant to therapeutic agents.
Collapse
|
10
|
Zhou G, Zeng Y, Luo Y, Guo S, Bao L, Zhang Q. Urine miR-93-5p is a promising biomarker for early detection of HBV-related hepatocellular carcinoma. Eur J Surg Oncol 2021; 48:95-102. [PMID: 34175168 DOI: 10.1016/j.ejso.2021.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/19/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION The mortality rate of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC)continues to increase because sensitive, early and readily available diagnostic tools are lacking. To address this problem, we aimed to identify diagnosticbio markers to be used for early detection of HCC. MATERIALS AND METHODS miR-93-5p was selected as a candidate biomarker based on the analyses of relevant Gene Expression Omnibus (GEO) datasets; it was validated using qPCR to quantify its expression levels in tissue, plasma and saliva sample sets. RESULTS miR-93-5p was significantly upregulated in HBV-related HCC tissue. Notably, miR-93-5p in plasma and urine was also significantly increased in patients with early HBV-related HCC. The expression of miR-93-5p was significantly and positively correlated in pairwise comparisons of samples (tissue vs. plasma, tissue vs. urine, plasma vs. urine). Moreover, after curative hepatectomy,miR-93-5p in plasma and urine decreased significantly over one month after the curative hepatectomy and returned to normal levels. Furthermore, receiver operating characteristic (ROC) analysis indicated that both plasma and urine miR-39-5p could detect be used to early, advanced and overall HBV-related HCC cases with more than 85% sensitivities and 93% of specificities. Finally, urine miR-93-5p could be used to predict progress-free survival for early HCC patients who received curative hepatectomy and overall survival for advanced HCC patients without curative treatments. CONCLUSIONS Plasma and urine miR-93-5p show great promise as potential novel biomarkers for early detection of HBV-related HCC. Moreover, urine miR-93-5p could be used to predict the prognosis of patients with HBV-related HCC.
Collapse
Affiliation(s)
- Guanlin Zhou
- Department of Hepatology, The Fifth People's Hospital of Ganzhou, Ganzhou, 341000, China.
| | - Yijun Zeng
- Department of Hepatology, The Fifth People's Hospital of Ganzhou, Ganzhou, 341000, China.
| | - Yingmin Luo
- Department of Hepatology, The Fifth People's Hospital of Ganzhou, Ganzhou, 341000, China.
| | - Sheng Guo
- Department of Hepatology, The Fifth People's Hospital of Ganzhou, Ganzhou, 341000, China.
| | - Longyuan Bao
- Department of Hepatology, The Fifth People's Hospital of Ganzhou, Ganzhou, 341000, China.
| | - Qiong Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
11
|
HCV Proteins Modulate the Host Cell miRNA Expression Contributing to Hepatitis C Pathogenesis and Hepatocellular Carcinoma Development. Cancers (Basel) 2021; 13:cancers13102485. [PMID: 34069740 PMCID: PMC8161081 DOI: 10.3390/cancers13102485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary According to the last estimate by the World Health Organization (WHO), more than 71 million individuals have chronic hepatitis C worldwide. The persistence of HCV infection leads to chronic hepatitis, which can evolve into liver cirrhosis and ultimately into hepatocellular carcinoma (HCC). Although the pathogenic mechanisms are not fully understood, it is well established that an interplay between host cell factors, including microRNAs (miRNA), and viral components exist in all the phases of the viral infection and replication. Those interactions establish a complex equilibrium between host cells and HCV and participate in multiple mechanisms characterizing hepatitis C pathogenesis. The present review aims to describe the role of HCV structural and non-structural proteins in the modulation of cellular miRNA during HCV infection and pathogenesis. Abstract Hepatitis C virus (HCV) genome encodes for one long polyprotein that is processed by cellular and viral proteases to generate 10 polypeptides. The viral structural proteins include the core protein, and the envelope glycoproteins E1 and E2, present at the surface of HCV particles. Non-structural (NS) proteins consist of NS1, NS2, NS3, NS4A, NS4B, NS5a, and NS5b and have a variable function in HCV RNA replication and particle assembly. Recent findings evidenced the capacity of HCV virus to modulate host cell factors to create a favorable environment for replication. Indeed, increasing evidence has indicated that the presence of HCV is significantly associated with aberrant miRNA expression in host cells, and HCV structural and non-structural proteins may be responsible for these alterations. In this review, we summarize the recent findings on the role of HCV structural and non-structural proteins in the modulation of host cell miRNAs, with a focus on the molecular mechanisms responsible for the cell re-programming involved in viral replication, immune system escape, as well as the oncogenic process. In this regard, structural and non-structural proteins have been shown to modulate the expression of several onco-miRNAs or tumor suppressor miRNAs.
Collapse
|
12
|
Dong W, Li J, Dong X, Shi W, Zhang Y, Liu Y. MiR-17 and miR-93 Promote Tumor Progression by Targeting p21 in Patients with Chordoma. Onco Targets Ther 2021; 14:3109-3118. [PMID: 34054299 PMCID: PMC8153071 DOI: 10.2147/ott.s307138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Objective MicroRNAs have been implicated in the progression of various cancers. However, the role of microRNAs in chordoma remains to be further elucidated. Here, we purposed to character the role of two microRNAs, miR-17 and miR-93, and their potential mechanisms in chordoma. Methods The expression and prognostic value of miR-17 and miR-93 were assessed by the quantitative real-time polymerase chain reaction, Kaplan-Meier survival curve, and Cox regression analysis. The effects of miR-17/93 mimics on chordoma cell proliferation, colony formation, and invasion were analyzed by CCK-8 assay, colony formation assay, and transwell assay. The downstream target of miR-17/93 was further explored via luciferase reporter assay. Results High expression of miR-17/93 was identified in chordoma tissues, and was associated with poor prognosis. Overexpression of miR-17/93 contributed to cell proliferation, colony formation, and invasion. Mechanistically, we demonstrated that miR-17/93 directly targeted p21 and decreased the expression of p21. Besides, the rescue assay further confirmed the essential role of the miR-17/93-p21 axis in chordoma. Conclusion Our results revealed the potential oncogenic effect of the miR-17/93 on chordoma progression, and suggested that the miR-17/93-p21 axis served as a promising therapeutic target in chordoma.
Collapse
Affiliation(s)
- Wei Dong
- Department of Neurosurgery, Tangshan People's Hospital, Tangshan, Hebei, People's Republic of China
| | - Jingwu Li
- Department of Tumor Surgery, Tangshan People's Hospital, Tangshan, Hebei, People's Republic of China
| | - Xiaoliu Dong
- Department of Neurology, Tangshan People's Hospital, Tangshan, Hebei, People's Republic of China
| | - Wenjian Shi
- Department of Neurosurgery, Tangshan People's Hospital, Tangshan, Hebei, People's Republic of China
| | - Yu Zhang
- Department of Neurological Intensive Care Unit, Tangshan People's Hospital, Tangshan, Hebei, People's Republic of China
| | - Yongliang Liu
- Department of Neurosurgery, Tangshan People's Hospital, Tangshan, Hebei, People's Republic of China
| |
Collapse
|
13
|
LncRNA miR503HG inhibits epithelial-mesenchymal transition and angiogenesis in hepatocellular carcinoma by enhancing PDCD4 via regulation of miR-15b. Dig Liver Dis 2021; 53:107-116. [PMID: 33046427 DOI: 10.1016/j.dld.2020.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To reveal the effect of lncRNA miR503HG on epithelial-mesenchymal transition (EMT) and angiogenesis in hepatocellular carcinoma (HCC). METHODS The expressions of miR503HG, miR-15b and PDCD4 in HCC tissues and cell lines were measured. After cell transfection, Transwell assay tested the migration and invasion ability of HCC cells. qRT-PCR and Western blot detected the expressions of EMT markers (E-cad, N-cad, Vim and Snail-1). Matrigel-based tube formation assay assessed the angiogenesis capacity of human umbilical vein endothelial cells (HUVECs) cultured in conditioned medium of treated HCC cells. ELISA detected the level of VEGF in supernatant of HUVECs. RIP, RNA pulldown and dual-luciferase reporter assay were applied to verify the binding of miR-15b to miR503HG or PDCD4. pcDNA3.1-miR503HG-BEL-7404 cells or pcDNA3.1-BEL-7404 cells were implanted into nude mice for construction of HCC model in vivo. RESULTS miR503HG and PDCD4 were under-expressed and miR-15b was over-expressed in HCC cells and tissues. Up-regulation of miR503HG and PDCD4 or inhibition of miR-15b hindered migration, invasion and EMT of HCC cells and angiogenesis of HUVECs. Both miR503HG and PDCD4 could bind to miR-15b. Over-expression of miR503HG suppressed HCC growth and angiogenesis in nude mice. CONCLUSION LncRNA miR503HG suppresses EMT and angiogenesis in HCC via miR-15b/PDCD4 axis.
Collapse
|
14
|
Fuchs HR, Meister R, Lotke R, Framme C. The microRNAs miR-302d and miR-93 inhibit TGFB-mediated EMT and VEGFA secretion from ARPE-19 cells. Exp Eye Res 2020; 201:108258. [PMID: 32980316 DOI: 10.1016/j.exer.2020.108258] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/31/2020] [Accepted: 09/18/2020] [Indexed: 01/21/2023]
Abstract
The transforming growth factor-beta (TGFB) plays an essential role in the pathogenesis of some ophthalmologic diseases, including neovascular age-related macular degeneration (nAMD) and proliferative vitreoretinopathy (PVR). TGFB activates the transcription factors SMAD2 and SMAD3 via the TGFB receptor, which together activate several genes, including VEGFA. TGFB treated ARPE-19 cells show an increased proliferation rate and undergo epithelial to mesenchymal transition (EMT). Since microRNAs (miRNAs) are capable of inhibiting the translation of multiple genes, we screened for miRNAs that regulate the TGFB signalling pathways at multiple levels. In this study, we focused on two miRNAs, miR-302d and miR-93, which inhibit TGFB signalling pathway and therefore TGFB-induced EMT transition as well as VEGFA secretion from ARPE-19 cells. Furthermore, we could show that both miRNAs can retransform TGFB-stimulated mesenchymal ARPE-19 cells towards the morphological epithelial-like state. Taken together, transient overexpression of these miRNAs in RPE cells might be a promising approach for further translational strategies.
Collapse
Affiliation(s)
- Heiko R Fuchs
- Institute of Experimental Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, 30625, Germany.
| | - Roland Meister
- Institute of Experimental Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, 30625, Germany
| | - Rishikesh Lotke
- Institute of Experimental Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, 30625, Germany
| | - Carsten Framme
- Institute of Experimental Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, 30625, Germany
| |
Collapse
|
15
|
Bookland M, Gillan E, Song X, Kolmakova A. Peripheral circulation miRNA expression of pediatric brain tumors and its relation to tumor miRNA expression levels. J Neurosurg Pediatr 2020; 26:136-144. [PMID: 32384264 DOI: 10.3171/2020.2.peds19715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/27/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Micro RNAs (miRNAs) in peripheral biofluids (e.g., blood, saliva, urine) have been investigated as potential sources of diagnostic and prognostic information for a variety of tumor types, including pediatric brain tumors. While significant predictive associations have been identified between unique serum miRNA concentrations and some pediatric brain tumors, it is unclear whether serum miRNA abnormalities in pediatric brain tumor patients are representative of miRNA alterations in the tumor tissue compartment or whether they represent host tissue reactions to the presence of a brain tumor. The authors sought to identify whether serum miRNA changes in pediatric brain tumor patient sera could be explained by miRNA alterations within their tumors. METHODS Matched serum and tissue samples were taken from a cohort of pediatric brain tumor patients (juvenile pilocytic astrocytoma [JPA] = 3, medulloblastoma = 4, ependymoma = 3), and unmatched control samples (n = 5) were acquired from control pediatric patients without oncological diagnoses. Extracted RNAs were tested within an array of 84 miRNAs previously noted to be relevant in a variety of brain tumors. RESULTS miR-26a-5p correlated strongly in JPA patients within both the serum and tumor tissue samples (R2 = 0.951, p = 0.046), and serum levels were highly predictive of JPA (area under the curve = 0.751, p = 0.027). No other miRNAs that were significantly correlated between biological compartments were significantly associated with brain tumor type. In total, 15 of 84 tested miRNAs in JPA patients, 14 of 84 tested miRNAs in ependymoma patients, and 4 of 84 tested miRNAs in medulloblastoma patients were significantly, positively correlated between serum and tumor tissue compartments (R2 > 0.950, p < 0.05). CONCLUSIONS The majority of miRNA changes in pediatric brain tumor patient sera that are significantly associated with the presence of a brain tumor do not correlate with brain tumor miRNA expression levels. This suggests that peripheral miRNA changes within pediatric brain tumor patients likely derive from tissues other than the tumors themselves.
Collapse
Affiliation(s)
- Markus Bookland
- Divisions of1Neurosurgery and
- 2Department of Pediatrics, University of Connecticut Health Center, Farmington; and
| | - Eileen Gillan
- 3Hematology-Oncology, Connecticut Children's, Hartford
| | - Xianyuan Song
- 4Department of Pathology & Lab Medicine, Hartford Hospital, Hartford, Connecticut
| | - Antonina Kolmakova
- 2Department of Pediatrics, University of Connecticut Health Center, Farmington; and
| |
Collapse
|
16
|
microRNA-93-5p promotes hepatocellular carcinoma progression via a microRNA-93-5p/MAP3K2/c-Jun positive feedback circuit. Oncogene 2020; 39:5768-5781. [PMID: 32719439 DOI: 10.1038/s41388-020-01401-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/03/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022]
Abstract
Cumulative evidence suggests that microRNAs (miRNAs) promote gene expression in cancers. However, the pathophysiologic relevance of miRNA-mediated RNA activation in hepatocellular carcinoma (HCC) remains to be established. Our previous miRNA expression profiling in seven-paired HCC specimens revealed miR-93-5p as an HCC-related miRNA. In this study, miR-93-5p expression was assessed in HCC tissues and cell lines by quantitative real-time PCR and fluorescence in situ hybridization. The correlation of miR-93-5p expression with survival and clinicopathological features of HCC was determined by statistical analysis. The function and potential mechanism of miR-93-5p in HCC were further investigated by a series of gain- or loss-of-function experiments in vitro and in vivo. We identified that miR-93-5p, overexpressed in HCC specimens and cell lines, leads to poor outcomes in HCC cases and promotes proliferation, migration, and invasion in HCC cell lines. Mechanistically, rather than decreasing target mRNA levels as expected, miR-93-5p binds to the 3'-untranslated region (UTR) of mitogen-activated protein kinase kinase kinase 2 (MAP3K2) to directly upregulate its expression and downstream p38 and c-Jun N-terminal kinase (JNK) pathway, thereby leading to cell cycle progression in HCC. Notably, we also demonstrated that c-Jun, a downstream effector of the JNK pathway, enhances miR-93-5p transcription by targeting its promoter region. Besides, downregulation of miR-93-5p significantly retarded tumor growth, while overexpression of miR-93-5p accelerated tumor growth in the HCC xenograft mouse model. Altogether, we revealed a miR-93-5p/MAP3K2/c-Jun positive feedback loop to promote HCC progression in vivo and in vitro, representing an RNA-activating role of miR-93-5p in HCC development.
Collapse
|
17
|
Ashrafizadeh M, Najafi M, Mohammadinejad R, Farkhondeh T, Samarghandian S. Flaming the fight against cancer cells: the role of microRNA-93. Cancer Cell Int 2020; 20:277. [PMID: 32612456 PMCID: PMC7325196 DOI: 10.1186/s12935-020-01349-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
There have been attempts to develop novel anti-tumor drugs in cancer therapy. Although satisfying results have been observed at a consequence of application of chemotherapeutic agents, the cancer cells are capable of making resistance into these agents. This has forced scientists into genetic manipulation as genetic alterations are responsible for generation of a high number of cancer cells. MicroRNAs (miRs) are endogenous, short non-coding RNAs that affect target genes at the post-transcriptional level. Increasing evidence reveals the potential role of miRs in regulation of biological processes including angiogenesis, metabolism, cell proliferation, cell division, and cell differentiation. Abnormal expression of miRs is associated with development of a number of pathologic events, particularly cancer. MiR-93 plays a significant role in both physiological and pathological mechanisms. At the present review, we show how this miR dually affects the proliferation and invasion of cancer cells. Besides, we elucidate the oncogenesis or oncosuppressor function of miR-93.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
18
|
Zhang S, He Y, Liu C, Li G, Lu S, Jing Q, Chen X, Ma H, Zhang D, Wang Y, Huang D, Tan P, Chen J, Zhang X, Liu Y, Qiu Y. miR-93-5p enhances migration and invasion by targeting RGMB in squamous cell carcinoma of the head and neck. J Cancer 2020; 11:3871-3881. [PMID: 32328191 PMCID: PMC7171485 DOI: 10.7150/jca.43854] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Invasion and metastasis represent the primary causes of therapeutic failure in patients diagnosed with squamous cell carcinoma of the head and neck (SCCHN). Therefore, disease prediction and inhibition of invasion and metastasis are critical for enhancing the survival of patients with SCCHN. Our previous study revealed that increased expression of miR-93-5p is associated with poor prognosis in SCCHN; however, the mechanism underlying the oncogenic functions of miR-93-5p in SCCHN migration and invasion remains unclear. Using qPCR analyses, transwell assays, and scratch tests, we demonstrated that expression of ectopic miR-93-5p induced the migration and invasion of SCCHN, and this was accompanied by corresponding alterations in biomarkers and transcription factors specific for epithelial-mesenchymal transition (EMT). Luciferase reporter assays were used to demonstrate that miR-93-5p directly targeted the 3' UTR of RGMB, and we further found that the tumor-promoting functions of miR-93-5p were partly mediated by targeting RGMB, whose downregulation also promoted the migration and invasion of SCCHN. Overall, our results indicate that miR-93-5p acts as an oncogene in the regulation of migration and invasion by suppressing RGMB in SCCHN. These findings provide novel evidence that miR-93-5p may serve as a valuable predictive biomarker and potential intervention target in patients with SCCHN.
Collapse
Affiliation(s)
- Shuiting Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Yanjuan He
- Department of Hematology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Chao Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Guo Li
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Shanhong Lu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Qiancheng Jing
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Department of Otolaryngology Head and Neck Surgery, Changsha Central Hospital,161 Shaoshan Road, University of South China, Changsha, Hunan 410004, People's Republic of China
| | - Xiyu Chen
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Huiling Ma
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Diekuo Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Yunyun Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Donghai Huang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Pingqing Tan
- Department of Head and Neck Surgery, Hunan Cancer Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, 283 Tongzipo Road, Changsha, Hunan 410013, People's Republic of China
| | - Jie Chen
- Department of Head and Neck Surgery, Hunan Cancer Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, 283 Tongzipo Road, Changsha, Hunan 410013, People's Republic of China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Yuanzheng Qiu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| |
Collapse
|
19
|
Zhang H, Zhuo C, Zhou D, Zhang M, Zhang F, Chen M, Xu S, Chen Z. Small Nucleolar RNA Host Gene 1 (SNHG1) and Chromosome 2 Open Reading Frame 48 (C2orf48) as Potential Prognostic Signatures for Liver Cancer by Constructing Regulatory Networks. Med Sci Monit 2020; 26:e920482. [PMID: 32036380 PMCID: PMC7029818 DOI: 10.12659/msm.920482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Liver cancer is a common malignant tumor with poor prognosis. The present study sought to identify potential signatures that can predict the prognosis of patients with liver cancer. Material/Methods The RNA sequencing (RNA-seq) and clinical information of liver cancer patients were obtained from the Cancer Genome Atlas (TCGA) database. Differentially expressed long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs) were identified between liver cancer and adjacent normal tissues. After predicting lncRNA–miRNA and miRNA–mRNA pairs using online databases, the competing endogenous RNA (ceRNA) networks were constructed. Furthermore, the prognostic value of these differentially expressed genes was evaluated using univariate and multivariate Cox regression analyses. Results After constructing the ceRNA network, 2 lncRNAs small nucleolar RNA host gene 1 (SNHG1) and chromosome 2 open reading frame 48 (C2orf48) with the most nodes were identified. Correlation analysis revealed that SNHG1 was correlated with miR-195 and C2orf48 was correlated with miR-195 and miR-93. High expression of SNHG1, C2orf48, and miR-93 can contribute to poorer clinical outcomes compared to low expression. Furthermore, low miR-195 expression was correlated with shorter survival time than was high expression. SNHG1 and C2orf48 were closely associated with histology grade. Univariate and multivariate Cox regression analyses confirmed that SNHG1 and C2orf48 are risk factors for liver cancer. Conclusions Our findings revealed that SNHG1 and C2orf48 possess potential prognostic value and should be considered as possible biomarkers for predicting clinical outcomes for patients with liver cancer.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Hepatopancreatobiliary Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China (mainland)
| | - Changhua Zhuo
- Department of Gastrointestinal Tumor Surgery, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China (mainland)
| | - Dong Zhou
- Department of Hepatopancreatobiliary Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China (mainland)
| | - Mingji Zhang
- Department of Hepatopancreatobiliary Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China (mainland)
| | - Fan Zhang
- Department of Hepatopancreatobiliary Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China (mainland)
| | - Minyong Chen
- Department of Hepatopancreatobiliary Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China (mainland)
| | - Shaohua Xu
- Department of Hepatopancreatobiliary Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China (mainland)
| | - Zhaoshuo Chen
- Department of Hepatopancreatobiliary Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China (mainland)
| |
Collapse
|
20
|
Wang H, Rao B, Lou J, Li J, Liu Z, Li A, Cui G, Ren Z, Yu Z. The Function of the HGF/c-Met Axis in Hepatocellular Carcinoma. Front Cell Dev Biol 2020; 8:55. [PMID: 32117981 PMCID: PMC7018668 DOI: 10.3389/fcell.2020.00055] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/22/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide, leading to a large global cancer burden. Hepatocyte growth factor (HGF) and its high-affinity receptor, mesenchymal epithelial transition factor (c-Met), are closely related to the onset, progression, and metastasis of multiple tumors. The HGF/c-Met axis is involved in cell proliferation, movement, differentiation, invasion, angiogenesis, and apoptosis by activating multiple downstream signaling pathways. In this review, we focus on the function of the HGF/c-Met axis in HCC. The HGF/c-Met axis promotes the onset, proliferation, invasion, and metastasis of HCC. Moreover, it can serve as a biomarker for diagnosis and prognosis, as well as a therapeutic target for HCC. In addition, it is closely related to drug resistance during HCC treatment.
Collapse
Affiliation(s)
- Haiyu Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Benchen Rao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiamin Lou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhao Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenguo Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ang Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangying Cui
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Yang YL, Liu P, Li D, Yang Q, Li B, Jiang XJ. Stat-3 signaling promotes cell proliferation and metastasis of gastric cancer through PDCD4 downregulation. Kaohsiung J Med Sci 2019; 36:244-249. [PMID: 31859425 DOI: 10.1002/kjm2.12159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 10/28/2019] [Indexed: 01/20/2023] Open
Abstract
The present study explored a new downstream regulator of Stat-3 signaling, miR-499-5p and its target gene programmed cell death 4 (PDCD4) in cell survival and metastasis of gastric cancer. Our results showed that miR-499-5p is significantly upregulated in human gastric cancer cell line SGC-7901. We further demonstrated that miR-499-5p promotes gastric cancer cell proliferation and invasion in vitro. Mechanistically, we demonstrated that upregulation of miR-499-5p expression associated with inhibition of PDCD4; STAT3 transcriptional activation by IL-6 is crucial for the upregulation of miR-499-5p expression. These results indicate that the STAT3-miR-499-5p-PDCD4 signaling axis plays an important role in gastric cancer progression and a potentially therapeutic target for gastric cancer treatment.
Collapse
Affiliation(s)
- Yue-Lou Yang
- Department of Gastroenterology, Qingdao University Affiliated Qingdao Municipal Hospital, Qingdao, Shandong, China.,Huangdao District Central Hospital, Qingdao, Shandong, China
| | - Pei Liu
- Department of Infection, The Affiliated hospital of Qingdao university, Qingdao, Shandong, China
| | - Dong Li
- Huangdao District Central Hospital, Qingdao, Shandong, China
| | - Qun Yang
- Huangdao District Central Hospital, Qingdao, Shandong, China
| | - Bin Li
- Huangdao District Central Hospital, Qingdao, Shandong, China
| | - Xiang-Jun Jiang
- Department of Gastroenterology, Qingdao University Affiliated Qingdao Municipal Hospital, Qingdao, Shandong, China
| |
Collapse
|
22
|
Zhang D, Liu E, Tian W, Zhang Z, Wang L, Li J. MiR-93 blocks cell cycle progression and promotes apoptosis in uterine leiomyoma cells by targeting CCND1. Anat Rec (Hoboken) 2019; 303:2372-2381. [PMID: 31674138 DOI: 10.1002/ar.24308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/28/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
Uterine leiomyoma (UL) is the most common type of benign tumor in the women's reproductive system. A number of genes has been found to play an important role in the initiation and progression of UL, including miRNAs. In this study, our results exhibited that miR-93, a member of mir-106b-25 cluster, significantly reduced the cell viability, promoted cell cycle arrest, caused apoptosis, and inhibited migration in UL cells (p < .01). Moreover, our results have provided experimental evidence that miR-93 regulated the biological functions of UL cells by targeting CCND1.
Collapse
Affiliation(s)
- Donghong Zhang
- Obstetrics and Gynecology, , Tangshan Gongren Hospital, Tangshan, Hebei Province, China
| | - Enling Liu
- Obstetrics and Gynecology, , Tangshan Gongren Hospital, Tangshan, Hebei Province, China
| | - Wei Tian
- Experimental Diagnostics, Tangshan Gongren Hospital, Tangshan, Hebei Province, China
| | - Zhiyong Zhang
- Experimental Diagnostics, Tangshan Gongren Hospital, Tangshan, Hebei Province, China
| | - Liqun Wang
- Obstetrics and Gynecology, , Tangshan Gongren Hospital, Tangshan, Hebei Province, China
| | - Jun Li
- Obstetrics and Gynecology, , Tangshan Gongren Hospital, Tangshan, Hebei Province, China
| |
Collapse
|
23
|
Nasr MA, Salah RA, Abd Elkodous M, Elshenawy SE, El-Badri N. Dysregulated MicroRNA Fingerprints and Methylation Patterns in Hepatocellular Carcinoma, Cancer Stem Cells, and Mesenchymal Stem Cells. Front Cell Dev Biol 2019; 7:229. [PMID: 31681762 PMCID: PMC6811506 DOI: 10.3389/fcell.2019.00229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the top causes of cancer mortality worldwide. Although HCC has been researched extensively, there is still a need for novel and effective therapeutic interventions. There is substantial evidence that initiation of carcinogenesis in liver cirrhosis, a leading cause of HCC, is mediated by cancer stem cells (CSCs). CSCs were also shown to be responsible for relapse and chemoresistance in several cancers, including HCC. MicroRNAs (miRNAs) constitute important epigenetic markers that regulate carcinogenesis by acting post-transcriptionally on mRNAs, contributing to the progression of HCC. We have previously shown that co-culture of cancer cells with mesenchymal stem cells (MSCs) could induce the reprogramming of MSCs into CSC-like cells. In this review, we evaluate the available data concerning the epigenetic regulation of miRNAs through methylation and the possible role of this regulation in stem cell and somatic reprogramming in HCC.
Collapse
Affiliation(s)
- Mohamed A Nasr
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Egypt
| | - Radwa Ayman Salah
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Egypt
| | - M Abd Elkodous
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Egypt
| | - Shimaa E Elshenawy
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Egypt
| |
Collapse
|
24
|
Zhao M, Zhu N, Hao F, Song Y, Wang Z, Ni Y, Ding L. The Regulatory Role of Non-coding RNAs on Programmed Cell Death Four in Inflammation and Cancer. Front Oncol 2019; 9:919. [PMID: 31620370 PMCID: PMC6759660 DOI: 10.3389/fonc.2019.00919] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022] Open
Abstract
Programmed cell death 4 (PDCD4) is a tumor suppressor gene implicated in many cellular functions, including transcription, translation, apoptosis, and the modulation of different signal transduction pathways. The downstream mechanisms of PDCD4 have been well-discussed, but its upstream regulators have not been systematically summarized. Noncoding RNAs (ncRNAs) are gene transcripts with no protein-coding potential but play a pivotal role in the regulation of the pathogenesis of solid tumors, cardiac injury, and inflamed tissue. In recent studies, many ncRNAs, especially microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), were found to interact with PDCD4 to manipulate its expression through transcriptional regulation and function as oncogenes or tumor suppressors. For example, miR-21, as a classic oncogene, was identified as the key regulator of PDCD4 by targeting its 3′-untranslated region (UTR) to promote tumor proliferation, migration, and invasion in colon, breast, and bladder carcinoma. Therefore, we reviewed the recently emerging pleiotropic regulation of PDCD4 by ncRNAs in cancer and inflammatory disorders and aimed to shed light on the mechanisms of associated diseases, which could be conducive to the development of novel treatment strategies for PDCD4-induced diseases.
Collapse
Affiliation(s)
- Mengxiang Zhao
- Central Laboratory Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Nisha Zhu
- Central Laboratory Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fengyao Hao
- Central Laboratory Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuxian Song
- Central Laboratory Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhiyong Wang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Nanjing, China
| | - Yanhong Ni
- Central Laboratory Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Liang Ding
- Central Laboratory Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
25
|
Microsatellite instability in mismatch repair and tumor suppressor genes and their expression profiling provide important targets for the development of biomarkers in gastric cancer. Gene 2019; 710:48-58. [PMID: 31145962 DOI: 10.1016/j.gene.2019.05.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/13/2019] [Accepted: 05/25/2019] [Indexed: 12/24/2022]
|
26
|
Chen C, Zheng Q, Kang W, Yu C. Long non-coding RNA LINC00472 suppresses hepatocellular carcinoma cell proliferation, migration and invasion through miR-93-5p/PDCD4 pathway. Clin Res Hepatol Gastroenterol 2019; 43:436-445. [PMID: 30522853 DOI: 10.1016/j.clinre.2018.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/10/2018] [Accepted: 11/14/2018] [Indexed: 02/04/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most prevalent cancer and the second leading cause of cancer-related deaths. In the present study, we have demonstrated that long non-coding RNA (lncRNA) LINC00472 was low expressed in human HCC tissues and cell lines compared with adjacent non-tumor liver tissues and normal liver cell lines respectively. LINC00472 was also low expressed in HCC tissues from patients with metastasis compared with tissues from patients without metastasis. Expression level of LINC00472 was positively correlated with patient overall survival (OS) rate. Forced expression of LINC00472 suppressed cell proliferation, migration, invasion and promoted cell apoptosis in HCC cells Huh-7 and SMMC-7721. MiR-93-5p was a direct target of LINC00472, and miR-93-5p directly targeted PDCD4. The miR-93-5p/PDCD4 pathway mediated the suppressing role of LINC00472 in HCC cells. Therefore, LINC00472 was an important tumor suppressor in human HCC, which could be used as a bio-marker for HCC therapy.
Collapse
Affiliation(s)
- Changyu Chen
- Department of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, 218, Jixi avenue, Hefei 230022, Anhui, PR China
| | - Qiang Zheng
- Department of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, 218, Jixi avenue, Hefei 230022, Anhui, PR China
| | - Weibiao Kang
- Department of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, 218, Jixi avenue, Hefei 230022, Anhui, PR China
| | - Changjun Yu
- Department of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, 218, Jixi avenue, Hefei 230022, Anhui, PR China.
| |
Collapse
|
27
|
Irani S. Emerging insights into the biology of metastasis: A review article. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:833-847. [PMID: 31579438 PMCID: PMC6760483 DOI: 10.22038/ijbms.2019.32786.7839] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 02/16/2019] [Indexed: 12/12/2022]
Abstract
Metastasis means the dissemination of the cancer cells from one organ to another which is not directly connected to the primary site. Metastasis has a crucial role in the prognosis of cancer patients. A few theories, different types of cell and several molecular pathways have been proposed to explain the mechanism of metastasis. In this work, the related articles in the limited period of time, 2000-mid -2018 were reviewed, through search in PubMed, Google Scholar and Scopus database. The articles published in the last two decades related to the biology of cancer metastasis were selected and the most important factors were discussed. Metastasis is critical factor to predict survival in patients with advanced cancer and prognosis determines the treatment plan. Many different cell types and various signaling pathways control the metastatic process. Metastasis is a multistep process. Many signaling pathways and molecules are involved in metastasis. Increasing knowledge about the mechanism of metastasis can help in finding the promising targets of cancer therapy.
Collapse
Affiliation(s)
- Soussan Irani
- Dental Research Centre, Oral Pathology Department, Dental Faculty, Hamadan University of Medical Sciences, Hamadan,Iran, Lecturer at Griffith University, Gold Coast, Australia
| |
Collapse
|
28
|
Zhu Y, Liu L, Hu L, Dong W, Zhang M, Liu Y, Li P. Effect of Celastrus orbiculatus in inhibiting Helicobacter pylori induced inflammatory response by regulating epithelial mesenchymal transition and targeting miR-21/PDCD4 signaling pathway in gastric epithelial cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:91. [PMID: 31035975 PMCID: PMC6489279 DOI: 10.1186/s12906-019-2504-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The extract of Celastrus orbiculatus (COE) have been studied for anti-Helicobacter pylori (H. pylori) activity and anti-cancer effects in vitro and in vivo. However, the molecular mechanism by which COE inhibits H. pylori-induced inflammatory response has not been fully elucidated so far. METHODS The effects of COE on viability, morphological changes, inflammatory cytokine secretion, protein and mRNA expression were analyzed by MTT assay, enzyme-linked immunosorbent assay (ELISA), immunofluorescence, western blot and real-time PCR (RT-PCR), respectively. The methylation level of programmed cell death 4 (PDCD4) promoter was investigated by methylation-specific PCR. (MSP) . RESULTS COE effectively inhibited the H.pylori-induced inflammatory response by regulating epithelial-mesenchymal transition (EMT). The methylation level of PDCD4 promoter was suppressed by COE, which increased the expression ofPDCD4. Moreover, COE could inhibit microRNA-21 (miR-21) expression, as shown by an enhancement of its target gene PDCD4. Furthermore, both miR-21 over-expression and PDCD4 silencing attenuated the anti-inflammatory effect. of COE. CONCLUSIONS COE inhibits H. pylori induced inflammatory response through regulating EMT, correlating with inhibition of miR-21/PDCD4 signal pathways in gastric epithelial cells.
Collapse
Affiliation(s)
- Yaodong Zhu
- Chinese Integrative Medicine Oncology Department, First Affiliated Hospital of Medical University of Anhui, Hefei, 230000 Anhui China
| | - Lei Liu
- General Surgery Department, First Affiliated Hospital of Medical University of Anhui, Hefei, 230000 Anhui China
| | - Lei Hu
- Emergency Department, First Affiliated Hospital of Medical University of Anhui, Hefei, 230000 Anhui China
| | - Wenqing Dong
- Chinese Integrative Medicine Oncology Department, First Affiliated Hospital of Medical University of Anhui, Hefei, 230000 Anhui China
| | - Mei Zhang
- Chinese Integrative Medicine Oncology Department, First Affiliated Hospital of Medical University of Anhui, Hefei, 230000 Anhui China
| | - Yanqing Liu
- Institute of Combining Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Ping Li
- Chinese Integrative Medicine Oncology Department, First Affiliated Hospital of Medical University of Anhui, Hefei, 230000 Anhui China
| |
Collapse
|
29
|
Zhu L, Yang N, Du G, Li C, Liu G, Liu S, Xu Y, Di Y, Pan W, Li X. LncRNA CRNDE promotes the epithelial-mesenchymal transition of hepatocellular carcinoma cells via enhancing the Wnt/β-catenin signaling pathway. J Cell Biochem 2019; 120:1156-1164. [PMID: 30430650 PMCID: PMC6587876 DOI: 10.1002/jcb.26762] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 01/31/2018] [Indexed: 01/24/2023]
Abstract
Colorectal neoplasia differentially expressed (CRNDE) is a significantly upregulated long noncoding RNA in hepatocellular carcinoma (HCC). CRNDE could promote cell proliferation, migration, and invasion, while its molecular mechanisms were still largely unclear. In this study, we investigated the expression and function of CRNDE. CRNDE was significantly upregulated in tumor tissues compared with adjacent normal tissues. In vitro, we revealed that knockdown of CRNDE inhibited cell proliferation, migration, and cell invasion capacities in HCC. Animal studies indicated that CRNDE knockdown represses both growth and metastasis of HCC tumors in vivo. Moreover, knockdown of CRNDE suppressed the cell epithelial-mesenchymal transition (EMT) process by increasing the expression of E-cadherin and ZO-1, whereas, decreasing the expression of N-cadherin, slug, twist, and vimentin in HCC cells. We also revealed that knockdown of CRNDE suppressed the Wnt/β-catenin signaling in HCC. Thus, CRNDE could modulate EMT of HCC cells and knockdown of CRNDE impaired the mesenchymal properties. CRNDE increased invasion of HCC cells might be through activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Liying Zhu
- Department of Medical LaboratoryAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Nenghong Yang
- Department of Hepatobiliary SurgerySurgery, Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Guiqin Du
- The First People's Hospital of GuiyangGuiyangGuizhouChina
| | - Chengcheng Li
- Department of Medical LaboratoryAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Guoqi Liu
- Department of Medical LaboratoryAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Shengju Liu
- Department of Medical LaboratoryAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Yongjie Xu
- Department of Medical LaboratoryAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Yanan Di
- Department of Clinical Laboratory MedicineBeifang Hospital of China North Industries Group CorporationBeijingChina
| | - Wei Pan
- Department of Medical LaboratoryAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Xing Li
- Department of Medical LaboratoryAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| |
Collapse
|
30
|
Li B, Lou G, Zhou J. MT1‑MMP promotes the proliferation and invasion of gastric carcinoma cells via regulating vimentin and E‑cadherin. Mol Med Rep 2019; 19:2519-2526. [PMID: 30720114 PMCID: PMC6423635 DOI: 10.3892/mmr.2019.9918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022] Open
Abstract
The present study aimed to explore the possible effects of membrane‑type 1 matrix metalloproteinase (MT1‑MMP) on gastric carcinoma cells proliferation and invasion. Immunohistochemistry analysis was conducted to measure MT1‑MMP expression level in 15 patients with gastric carcinoma. Subsequently, recombinant short hairpin RNA (shRNA) vectors targeting MT1‑MMP were constructed to silence the expression of MT1‑MMP in gastric carcinoma cells. Then, the inhibitive efficiency was verified via reverse transcription quantitative polymerase chain reaction (RT‑qPCR) and western blot analysis. The effects of MT1‑MMP silencing on cell proliferation and invasion were detected through Cell Counting Kit‑8 test and Transwell assays. The expression levels of vimentin and epithelial cadherin (E‑cadherin) were detected by RT‑qPCR. The immunohistochemistry analysis results revealed that MT1‑MMP expression in gastric carcinoma tissues was markedly overexpressed compared with non‑cancerous adjacent tissues. The MT1‑MMP expression level in cancer‑derived cell line AGS cells was also significantly increased compared with that in non‑cancer‑derived GES‑1 cells. In addition, the MT1‑MMP expression level in AGS cells was significantly decreased via shRNA transfection. Cell proliferation and invasion were markedly inhibited following knockdown of MT1‑MMP level in AGS cells. These inhibitory effects were associated with the decreased expression of vimentin and increased expression of E‑cadherin. MT1‑MMP was overexpressed in gastric carcinoma cells, and silencing of MT1‑MMP inhibited the proliferation and invasion of cells via regulating the expression of vimentin and E‑cadherin.
Collapse
Affiliation(s)
- Bo Li
- Department of Radiotherapy, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215006, P.R. China
| | - Guochun Lou
- Department of Gastroenterology, Zhejiang Hospital, Hangzhou, Zhejiang 310000, P.R. China
| | - Juying Zhou
- Department of Radiotherapy, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
31
|
Karihtala P, Porvari K, Soini Y, Eskelinen M, Juvonen P, Haapasaari KM. Expression Levels of microRNAs miR-93 and miR-200a in Pancreatic Adenocarcinoma with Special Reference to Differentiation and Relapse-Free Survival. Oncology 2018; 96:164-170. [PMID: 30537722 DOI: 10.1159/000494274] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/02/2018] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Protein levels of the transcription factor nuclear factor erythroid-derived 2-like 2 (Nrf2) and its inhibitor Kelch-like ECH-associated protein 1 (Keap1) have been proposed as prognostic factors in pancreatic ductal adenocarcinomas (PDACs). These cellular redox-state-regulating enzymes are targeted by several microRNAs, including miR-93 and miR-200a. METHODS We assessed mRNA levels of Nrf2 and Keap1 and tissue expression of miR-93 and miR-200a in 51 patients with surgically treated PDAC. Expression levels were separately measured in malignant cells and adjacent benign cells. RESULTS Keap1 and Nrf2 mRNA expression levels in cancer cells were lower than in adjacent benign tissue (Wilcoxon's test; p = 0.0015 and p = 0.000032, respectively). Conversely, miR-93 expression was higher in cancer cells than in adjacent benign tissue (p = 0.00082). Low levels of miR-93 and miR-200a in cancer cells were associated with poorer differentiation (p = 0.004 and p = 0.002, respectively). In univariate survival analysis, benign-tissue levels of miR-200a above the median predicted better relapse-free survival (RFS) (p = 0.045). CONCLUSIONS High miR-93 and miR-200a levels in cancer cells of PDAC were associated with better differentiation, and miR-200a expression in benign tissue with excellent RFS. Keap1 and Nrf2 mRNA levels showed prominent down-regulation in cancerous versus benign tissue, but they were not associated with disease aggressiveness or outcome.
Collapse
Affiliation(s)
- Peeter Karihtala
- Department of Oncology and Radiotherapy, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland,
| | - Katja Porvari
- Department of Pathology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Ylermi Soini
- Department of Pathology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Matti Eskelinen
- Department of Surgery, Kuopio University Hospital and School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Petri Juvonen
- Department of Surgery, Kuopio University Hospital and School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Kirsi-Maria Haapasaari
- Department of Pathology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
32
|
Jiang H, Bu Q, Zeng M, Xia D, Wu A. MicroRNA-93 promotes bladder cancer proliferation and invasion by targeting PEDF. Urol Oncol 2018; 37:150-157. [PMID: 30455080 DOI: 10.1016/j.urolonc.2018.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVE MicroRNA-93 (miR-93) is upregulated in the urine of patients with bladder cancer (BC). Here, we investigated the role of miR-93 in BC progression and explored the underlying mechanism. METHODS miR-93 expression in BC tissues and cells was detected by real time-polymerase chain reaction. The effects of miR-93 and pigment epithelium-derived factor (PEDF) on cell proliferation and invasion were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Transwell assays. The binding of miR-93 to the 3'-untranslated region of PEDF was identified by the luciferase reporter assay. RESULTS miR-93 expression was higher in BC tissues than in normal controls, and its expression was associated with tumor stage and node stage. Inhibition of miR-93 suppressed the proliferation and invasion of BC cells. PEDF was identified as a target of miR-93 and shown to mediate the effect of miR-93 on cell proliferation and invasion. CONCLUSIONS The present data suggested that miR-93 promoted BC cell proliferation and invasion by targeting PEDF, providing new biomarkers and targets for BC diagnosis and treatment.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Urology, People's Hospital of Danyang, Jiangsu, China.
| | - Qiang Bu
- Department of Urology, People's Hospital of Danyang, Jiangsu, China
| | - Minghui Zeng
- Department of Urology, People's Hospital of Danyang, Jiangsu, China
| | - Dongdong Xia
- Department of Urology, People's Hospital of Danyang, Jiangsu, China
| | - Aibin Wu
- Department of Urology, People's Hospital of Danyang, Jiangsu, China
| |
Collapse
|
33
|
Gao Y, Deng K, Liu X, Dai M, Chen X, Chen J, Chen J, Huang Y, Dai S, Chen J. Molecular mechanism and role of microRNA-93 in human cancers: A study based on bioinformatics analysis, meta-analysis, and quantitative polymerase chain reaction validation. J Cell Biochem 2018; 120:6370-6383. [PMID: 30390344 DOI: 10.1002/jcb.27924] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/27/2018] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Currently, studies have shown that microRNA-93 (miR-93) can be an oncogene or a tumor suppressor in different kinds of cancers. The role of miR-93 in human cancers is inconsistent and the underlying mechanism on the aberrant expression of miR-93 is complicated. METHODS We first conducted gene enrichment analysis to give insight into the prospective mechanism of miR-93. Second, we performed a meta-analysis to evaluate the clinical value of miR-93. Finally, a validation test based on quantitative polymerase chain reaction (qPCR) was performed to further investigate the role of miR-93 in pan-cancer. RESULTS Gene Ontology (GO) enrichment analysis results showed that the target genes of miR-93 were closely related to transcription, and MAPK1, RBBP7 and Smad7 became the hub genes. In the diagnostic meta-analysis, the overall sensitivity, specificity, and area under the curve were 0.76 (0.64-0.85), 0.82 (0.64-0.92), and 0.85 (0.82-0.88), respectively, which suggested that miR-93 had excellent performance on the diagnosis for human cancers. In the prognostic meta-analysis, dysregulated miR-93 was found to be associated with poor OS in cancer patients. In the qPCR validation test, the serum levels of miR-93 were upregulated in breast cancer, breast hyperplasia, lung cancer, chronic obstructive pulmonary disease, nasopharyngeal cancer, hepatocellular cancer, gastric ulcer, endometrial cancer, esophageal cancer, laryngeal cancer, and prostate cancer compared with healthy controls. CONCLUSIONS miR-93 could act as an effective diagnostic and prognostic factor for cancer patients. Its clinical value for cancer early diagnosis and survival prediction is promising.
Collapse
Affiliation(s)
- Yun Gao
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Kaifeng Deng
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Xuexiang Liu
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Meiyu Dai
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Xiaoli Chen
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Jifei Chen
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Jianming Chen
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Yujie Huang
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Shengming Dai
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Jingfan Chen
- Department of General Surgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| |
Collapse
|
34
|
Han LL, Yin XR, Zhang SQ. miR-103 promotes the metastasis and EMT of hepatocellular carcinoma by directly inhibiting LATS2. Int J Oncol 2018; 53:2433-2444. [PMID: 30272278 PMCID: PMC6203164 DOI: 10.3892/ijo.2018.4580] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/21/2018] [Indexed: 01/17/2023] Open
Abstract
Improving the long-term survival of patients with hepatocellular carcinoma (HCC) remains a challenge due to metastasis and recurrence. In this study, we demonstrate that the overexpression of miR-103 in HCC cells promotes epithelial-mesenchymal transition (EMT), and is associated with an enhanced metastasis and poor outcomes, as shown by western blot analysis and immunohistochemistry. Mechanistically, using reporter luciferase assay we reveal that the serine/threonine-protein kinase, large tumor suppressor kinase 2 (LATS2), a key component of the Hippo signaling pathway, is a direct target of miR-103 in HCC cells. Transwell assay, MTT assay and western blot analysis were performed to reveal that LATS2 can counteract the functional effects of miR-103 on HCC metastasis, growth and EMT. The analyses of clinical data indicated that a high expression of miR-103 correlated with a high expression of vimentin, but with a low expression of LATS2 and E-cadherin in HCC tissues. miR-103 also reduced yes-associated protein (YAP) phosphorylation. On the whole, the findings of this study suggest that miR-103 promotes HCC metastasis and EMT by directly inhibiting LATS2. Thus, targeting miR-103/LATS2 may prove to be a promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Li-Li Han
- Department of Oncology, The Second Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xiao-Ran Yin
- Department of Oncology, The Second Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Shu-Qun Zhang
- Department of Oncology, The Second Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
35
|
Zhang X, Li F, Zhu L. Clinical significance and functions of microRNA-93/CDKN1A axis in human cervical cancer. Life Sci 2018; 209:242-248. [PMID: 30098344 DOI: 10.1016/j.lfs.2018.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/29/2018] [Accepted: 08/07/2018] [Indexed: 12/21/2022]
Abstract
AIM Accumulating studies have revealed that microRNA (miR)-93 may exert an oncogenic role in various cancers via inhibiting CDKN1A. However, the involvement of miR-93/CDKN1A axis in cervical cancer remains unclear. We aimed to investigate expression pattern, clinical significance and potential functions of miR-93/CDKN1A axis in cervical cancer. METHODS Expression levels of miR-93 and CDKN1A mRNA in 100 pairs of cervical cancer and matched non-cancerous tissue samples were detected by quantitative-PCR. Statistical analyses were performed to evaluate associations of miR-93 and/or CDKN1A expression with various clinicopathologic features and patients' prognosis. The functions of miR-93/CDKN1A axis on cell proliferation and invasion were also examined. RESULTS Compared to non-cancerous tissues, the expression levels of miR-93 and CDKN1A were dramatically increased and decreased in cervical cancer tissues, respectively (both P < 0.01). High miR-93 and/or low CDKN1A expression were significantly associated with advanced International Federation of Gynecology and Obstetrics stage, the presence of lymph node metastasis and recurrence (all P < 0.05). Importantly, patients with high miR-93 and/or low CDKN1A expression had shorter overall survival than those with low miR-93 and/or high CDKN1A expression. The multivariate analysis identified miR-93 and/or CDKN1A expression as independent prognostic factors of cervical cancer. Functionally, miR-93 promoted cell proliferation and invasion of cervical cancer cells via inhibiting CDKN1A. CONCLUSION miR-93 upregulation and CDKN1A downregulation may be both associated with the development, progression and patients' prognosis of cervical cancer. miR-93/CDKN1A axis may also play an important role in the malignancy of cervical cancer cells, suggesting its potential as a therapeutic target for this cancer.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Department of Radiology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Fengshuang Li
- Department of Gynecology & Tumor, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Linzhong Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Interventional Therapy, Peking University Cancer Hospital & Institute, China.
| |
Collapse
|
36
|
Shi B, Zhang X, Chao L, Zheng Y, Tan Y, Wang L, Zhang W. Comprehensive analysis of key genes, microRNAs and long non-coding RNAs in hepatocellular carcinoma. FEBS Open Bio 2018; 8:1424-1436. [PMID: 30186744 PMCID: PMC6120244 DOI: 10.1002/2211-5463.12483] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/10/2018] [Accepted: 06/25/2018] [Indexed: 12/14/2022] Open
Abstract
Human hepatocellular carcinoma (HCC) is a common aggressive cancer whose molecular mechanism remains elusive. We aimed to identify the key genes, microRNAs (miRNAs) and long non‐coding RNAs (lncRNAs) involved with HCC. We obtained mRNA, miRNA and lncRNA profiles for HCC from The Cancer Genome Atlas and then identified differentially expressed mRNAs (DEmRNAs), miRNAs (DEmiRNAs) and lncRNAs (DElncRNAs). We performed functional annotation of DEmRNAs and then constructed HCC‐specific DEmiRNA–DEmRNA, DEmiRNA–DElncRNA and DElncRNA–DEmiRNA–DEmRNA interaction networks. We searched for nearby target cis‐DEmRNAs of DElncRNAs and performed receiver operating characteristic and survival analyses. A total of 1239 DEmRNAs, 33 DEmiRNAs and 167 DElncRNAs in HCC were obtained. Retinol metabolism [false discovery rate (FDR) = 7.02 × 10−14] and metabolism of xenobiotics by cytochrome P450 (FDR = 7.30 × 10−11) were two significantly enriched pathways in HCC. We obtained 545 DEmiRNA–DEmRNA pairs that consisted of 258 DEmRNAs and 28 DEmiRNAs in HCC. mir‐424, miR‐93 and miR‐3607 are three hub DEmiRNAs of the HCC‐specific DEmiRNA–DEmRNA interaction network. HAND2‐AS1/ENSG00000232855–miR‐93–LRAT/RND3, ENSG00000232855–miR‐877–RCAN1 and ENSG00000232855–miR‐224–RND3 interactions were found in the HCC‐specific DElncRNA–DEmiRNA–DEmRNA interaction network. A total of three DElncRNA–nearby target DEmRNA pairs (HCG25–KIFC1, LOC105378687–CDC20 and LOC101927043–EPCAM) in HCC were obtained. Diagnostic and prognostic values of several selected DElncRNAs, DEmRNAs and DEmiRNAs for HCC were assessed. Our study identified several DEmRNAs, DEmiRNAs and DElncRNAs with great diagnostic or prognostic value for HCC, which may facilitate studies into the molecular mechanisms, and development of potential biomarkers and therapeutic target sites for HCC.
Collapse
Affiliation(s)
- Baoqi Shi
- Department of Intervention Inner Mongolia People's Hospital Hohhot China
| | - Xuejun Zhang
- Department of Intervention Inner Mongolia People's Hospital Hohhot China
| | - Lumeng Chao
- Department of Intervention Inner Mongolia People's Hospital Hohhot China
| | - Yu Zheng
- Department of Intervention Inner Mongolia People's Hospital Hohhot China
| | - Yongsheng Tan
- Department of Intervention Inner Mongolia People's Hospital Hohhot China
| | - Liang Wang
- Department of Intervention Inner Mongolia People's Hospital Hohhot China
| | - Wei Zhang
- Department of Intervention Inner Mongolia People's Hospital Hohhot China
| |
Collapse
|
37
|
Yang T, He X, Chen A, Tan K, Du X. LncRNA HOTAIR contributes to the malignancy of hepatocellular carcinoma by enhancing epithelial-mesenchymal transition via sponging miR-23b-3p from ZEB1. Gene 2018; 670:114-122. [PMID: 29778425 DOI: 10.1016/j.gene.2018.05.061] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/28/2018] [Accepted: 05/16/2018] [Indexed: 01/17/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer around the world, along with high mortality and metastasis rate. Our present study aimed to explore the role of LncRNA HOTAIR in the progression of HCC. Our data showed that HOTAIR was overexpressed in HCC tissues and cell lines (Huh7, Hep3B, HepG2, MHCC97H). Overexpressed HOTAIR promoted invasion and migration of HCC cells (Huh7) by enhancing epithelial-mesenchymal transition (EMT). Besides that, miR-23b-3p was predicted to be a target of HOTAIR and decreased expression of miR-23b-3p was observed in HCC tissues and cell lines. The up-regulation of HOTAIR strongly decreased the expression of miR-23b-3p. The further luciferase report confirmed the targeting reaction between HOTAIR and miR-23b-3p, suggesting that the expression of miR-23b-3p was negatively regulated by HOTAIR. Moreover, the zinc-finger E-box-binding homeobox 1 (ZEB1) protein was predicted to be a target of miR-23b-3p. The expression of ZEB1 was negatively regulated by miR-23b-3p while positively regulated by HOTAIR. Besides that, transfection with miR-23b-3p mimic counteracted the promoting effects of HOTAIR on invasion, migration and EMT of HCC cells. Our in vitro experiments suggested that HOTAIR promoted invasion and migration of HCC cells through enhancing EMT via sponging miR-23b-3p from ZEB1. Finally, the in vivo experiments indicated that HOTAIR could promote metastasis of HCC by enhancing EMT in vivo. Taken together, our study demonstrated that the HOTAIR-miR-23b-3p-ZEB1 axis may provide a new perspective for treatment of HCC.
Collapse
Affiliation(s)
- Tao Yang
- Department of General Surgery, Tangdu Hospital, the Fourth Military Medical University, Shaanxi 710038, Xi'an, China
| | - Xiaojun He
- Department of General Surgery, Tangdu Hospital, the Fourth Military Medical University, Shaanxi 710038, Xi'an, China
| | - An Chen
- Department of General Surgery, Tangdu Hospital, the Fourth Military Medical University, Shaanxi 710038, Xi'an, China
| | - Kai Tan
- Department of General Surgery, Tangdu Hospital, the Fourth Military Medical University, Shaanxi 710038, Xi'an, China
| | - Xilin Du
- Department of General Surgery, Tangdu Hospital, the Fourth Military Medical University, Shaanxi 710038, Xi'an, China.
| |
Collapse
|