1
|
Yuan H, Prabhala SV, Coolbaugh MJ, Stimple SD, Wood DW. Improved self-cleaving precipitation tags for efficient column free bioseparations. Protein Expr Purif 2024; 224:106578. [PMID: 39153561 DOI: 10.1016/j.pep.2024.106578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Current biological research requires simple protein bioseparation methods capable of purifying target proteins in a single step with high yields and purities. Conventional affinity tag-based approaches require specific affinity resins and expensive proteolytic enzymes for tag removal. Purification strategies based on self-cleaving aggregating tags have been previously developed to address these problems. However, these methods often utilize C-terminal cleaving contiguous inteins which suffer from premature cleavage, resulting in significant product loss during protein expression. In this work, we evaluate two novel mutants of the Mtu RecA ΔI-CM mini-intein obtained through yeast surface display for improved protein purification. When used with the elastin-like-polypeptide (ELP) precipitation tag, the novel mutants - ΔI-12 and ΔI-29 resulted in significantly higher precursor content, product purity and process yield compared to the original Mtu RecA ΔI-CM mini-intein. Product purities ranging from 68 % to 94 % were obtained in a single step for three model proteins - green fluorescent protein (GFP), maltose binding protein (MBP) and beta-galactosidase (beta-gal). Further, high cleaving efficiency was achieved after 5 h under most conditions. Overall, we have developed improved self-cleaving precipitation tags which can be used for purifying a wide range of proteins cheaply at laboratory scale.
Collapse
Affiliation(s)
- Hongyu Yuan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH, 43210, USA
| | - Sai Vivek Prabhala
- William G. Lowrie Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH, 43210, USA
| | - Michael J Coolbaugh
- William G. Lowrie Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH, 43210, USA
| | - Samuel D Stimple
- William G. Lowrie Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH, 43210, USA
| | - David W Wood
- William G. Lowrie Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
2
|
Mendes G, Faulk B, Kaparthi B, Irion AR, Fong BL, Bayless K, Bondos SE. Genetic Functionalization of Protein-Based Biomaterials via Protein Fusions. Biomacromolecules 2024; 25:4639-4662. [PMID: 39074364 PMCID: PMC11323028 DOI: 10.1021/acs.biomac.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024]
Abstract
Proteins implement many useful functions, including binding ligands with unparalleled affinity and specificity, catalyzing stereospecific chemical reactions, and directing cell behavior. Incorporating proteins into materials has the potential to imbue devices with these desirable traits. This review highlights recent advances in creating active materials by genetically fusing a self-assembling protein to a functional protein. These fusion proteins form materials while retaining the function of interest. Key advantages of this approach include elimination of a separate functionalization step during materials synthesis, uniform and dense coverage of the material by the functional protein, and stabilization of the functional protein. This review focuses on macroscale materials and discusses (i) multiple strategies for successful protein fusion design, (ii) successes and limitations of the protein fusion approach, (iii) engineering solutions to bypass any limitations, (iv) applications of protein fusion materials, including tissue engineering, drug delivery, enzyme immobilization, electronics, and biosensing, and (v) opportunities to further develop this useful technique.
Collapse
Affiliation(s)
- Gabriela
Geraldo Mendes
- Department
of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health, Bryan, Texas 77807-3260, United States
- Fralin
Biomedical Research Institute, Virginia
Tech University, Roanoke, Virginia 24016, United States
| | - Britt Faulk
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
- Department
of Biochemistry and Biophysics, Texas A&M
University, College Station, Texas 77843, United States
| | - Bhavika Kaparthi
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
| | - Andrew R. Irion
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
| | - Brandon Look Fong
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
| | - Kayla Bayless
- Department
of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health, Bryan, Texas 77807-3260, United States
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
| | - Sarah E. Bondos
- Department
of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health, Bryan, Texas 77807-3260, United States
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
- Department
of BioSciences, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
3
|
Nasu E, Kawakami N, Ohara N, Hayashi K, Miyamoto K. Column-free purification of an artificial protein nanocage, TIP60. Protein Expr Purif 2023; 205:106232. [PMID: 36642237 DOI: 10.1016/j.pep.2023.106232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
Protein nanocages, which have inner cavities and surface pores, are attractive materials for various applications, such as in catalysts and medicine. Recently, we produced an artificial protein nanocage, TIP60, and demonstrated its potential as a stimuli-responsive nanocarrier. In the present study, we report a simple purification method for TIP60 that can replace time-consuming and costly affinity chromatography purification. TIP60, which has an anionic surface charge, aggregated at mildly acidic pH and redissolved at neutral pH, maintaining its cage structure. This pH-responsive reversible precipitation allowed us to purify TIP60 from soluble fractions of the E. coli cell lysate by controlling the pH. Compared with conventional Ni-NTA column purification, the pH-responsive precipitation method provided purified TIP60 with similar purity (∼80%) and higher yield. This precipitation purification method should facilitate the large-scale investigation and practical use of TIP60 nanocages.
Collapse
Affiliation(s)
- Erika Nasu
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Norifumi Kawakami
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan.
| | - Naoya Ohara
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Keiichi Hayashi
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Kenji Miyamoto
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan.
| |
Collapse
|
4
|
Kopp J, Spadiut O. Inclusion Bodies: Status Quo and Perspectives. Methods Mol Biol 2023; 2617:1-13. [PMID: 36656513 DOI: 10.1007/978-1-0716-2930-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Multiple E. coli cultivations, producing recombinant proteins, lead to the formation of inclusion bodies (IBs). IBs historically were considered as nondesired by-products, due to their time- and cost-intensive purification. Nowadays, many obstacles in IB processing can be overcome. As a consequence, several industrial processes with E. coli favor IB formation over soluble production options due to the high space time yields obtained. Within this chapter, we discuss the state-of-the art biopharmaceutical IB process, review its challenges, highlight the recent developments and perspectives, and also propose alternative solutions, compared to the state-of-the art processing.
Collapse
Affiliation(s)
- Julian Kopp
- Research Division Integrated Bioprocess Development, TU Wien Institute of Chemical, Environmental, and Bioscience Engineering, Vienna, Austria.
| | - Oliver Spadiut
- Research Division Integrated Bioprocess Development, TU Wien Institute of Chemical, Environmental, and Bioscience Engineering, Vienna, Austria.
| |
Collapse
|
5
|
Kumar P, Sharma N, Ahmed MA, Verma AK, Umaraw P, Mehta N, Abubakar AA, Hayat MN, Kaka U, Lee SJ, Sazili AQ. Technological interventions in improving the functionality of proteins during processing of meat analogs. Front Nutr 2022; 9:1044024. [PMID: 36601080 PMCID: PMC9807037 DOI: 10.3389/fnut.2022.1044024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Meat analogs have opened a new horizon of opportunities for developing a sustainable alternative for meat and meat products. Proteins are an integral part of meat analogs and their functionalities have been extensively studied to mimic meat-like appearance and texture. Proteins have a vital role in imparting texture, nutritive value, and organoleptic attributes to meat analogs. Processing of suitable proteins from vegetable, mycoproteins, algal, and single-cell protein sources remains a challenge and several technological interventions ranging from the isolation of proteins to the processing of products are required. The present paper reviews and discusses in detail various proteins (soy proteins, wheat gluten, zein, algal proteins, mycoproteins, pulses, potato, oilseeds, pseudo-cereals, and grass) and their suitability for meat analog production. The review also discusses other associated aspects such as processing interventions that can be adapted to improve the functional and textural attributes of proteins in the processing of meat analogs (extrusion, spinning, Couette shear cell, additive manufacturing/3D printing, and freeze structuring). '.
Collapse
Affiliation(s)
- Pavan Kumar
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Seri Kembangan, Malaysia
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Muideen Adewale Ahmed
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Seri Kembangan, Malaysia
| | - Akhilesh K. Verma
- Department of Livestock Products Technology, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India
| | - Pramila Umaraw
- Department of Livestock Products Technology, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India
| | - Nitin Mehta
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Ahmed Abubakar Abubakar
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Seri Kembangan, Malaysia
| | - Muhammad Nizam Hayat
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Ubedullah Kaka
- Department of Companion Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Sung-Jin Lee
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon-si, South Korea
| | - Awis Qurni Sazili
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Seri Kembangan, Malaysia
- Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| |
Collapse
|
6
|
Freitas AI, Domingues L, Aguiar TQ. Tag-mediated single-step purification and immobilization of recombinant proteins toward protein-engineered advanced materials. J Adv Res 2022; 36:249-264. [PMID: 35127175 PMCID: PMC8799874 DOI: 10.1016/j.jare.2021.06.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Background The potential applications of protein-engineered functional materials are so wide and exciting that the interest in these eco-friendly advanced materials will further expand in the future. Tag-mediated protein purification/immobilization technologies have emerged as green and cost-effective approaches for the fabrication of such materials. Strategies that combine the purification and immobilization of recombinant proteins/peptides onto/into natural, synthetic or hybrid materials in a single-step are arising and attracting increasing interest. Aim of Review This review highlights the most significant advances of the last 5 years within the scope of tag-mediated protein purification/immobilization and elucidates their contributions for the development of efficient single-step purification and immobilization strategies. Recent progresses in the field of protein-engineered materials created using innovative protein-tag combinations and future opportunities created by these new technologies are also summarized and identified herein. Key Scientific Concepts of Review Protein purification/immobilization tags present a remarkable ability to establish specific non-covalent/covalent interactions between solid materials and biological elements, which prompted the creation of tailor-made and advanced functional materials, and of next-generation hybrid materials. Affinity tags can bind to a wide range of materials (of synthetic, natural or hybrid nature), being most suitable for protein purification. Covalently binding tags are most suitable for long-term protein immobilization, but can only bind naturally to protein-based materials. Hybrid affinity-covalently binding tags have allowed efficient one-step purification and immobilization of proteins onto different materials, as well as the development of innovative protein-engineered materials. Self-aggregating tags have been particularly useful in combination with other tags for generating protein-engineered materials with self-assembling, flexible and/or responsive properties. While these tags have been mainly explored for independent protein purification, immobilization or functionalization purposes, efficient strategies that combine tag-mediated purification and immobilization/functionalization in a single-step will be essential to guarantee the sustainable manufacturing of advanced protein-engineered materials.
Collapse
Affiliation(s)
- Ana I. Freitas
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Tatiana Q. Aguiar
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
7
|
Yang X, Lin Z, Jing Y. Cleavable Self-Aggregating Tags (cSAT) for Therapeutic Peptide Expression and Purification. Methods Mol Biol 2022; 2406:131-143. [PMID: 35089554 DOI: 10.1007/978-1-0716-1859-2_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Efficient protein and peptide expression and purification technologies are highly needed in biotechnology, especially in light of the increasing number of proteins and peptides that are being exploited for therapeutic use, which are inherently difficult to produce via biological means. In this chapter, we describe a facile, reliable, and cost-effective peptide production and purification strategy based on short self-assembling peptides (e.g., L6KD (LLLLLLKD)) and a C-terminal cleavage intein (e.g., Mtu ΔI-CM). This cleavable self-aggregating tag (cSAT) scheme depends on the in vivo formation of aggregates of the fusion protein containing the target peptide, which is induced during the expression by the presence of the self-assembling peptide in the construct. After a simple separation of the aggregates by centrifugation, the purified target peptide with authentic N-terminus is released in solution by pH-induced intein self-cleavage. As an example, a yield of about 4.4 μg/mg wet cell pellet was obtained when the cSAT scheme was used for the expression and purification of the therapeutic peptide GLP-1. This strategy provides a viable approach for preparing peptides with authentic N-termini, especially those in the range of 30 ~ 100 amino acids in size that are typically unstable or susceptible to degradation in Escherichia coli.
Collapse
Affiliation(s)
- Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.
| | - Yanyun Jing
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
8
|
Sannikova EP, Klebanov FA, Cheperegin SE, Kozlov DG. Properties and Biotechnological Application of Mutant Derivatives of the Mini-Intein PRP8 from Penicillium chrysogenum with Improved Control of C-Terminal Processing. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820080098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Mahmoudi Gomari M, Saraygord-Afshari N, Farsimadan M, Rostami N, Aghamiri S, Farajollahi MM. Opportunities and challenges of the tag-assisted protein purification techniques: Applications in the pharmaceutical industry. Biotechnol Adv 2020; 45:107653. [PMID: 33157154 DOI: 10.1016/j.biotechadv.2020.107653] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 01/16/2023]
Abstract
Tag-assisted protein purification is a method of choice for both academic researches and large-scale industrial demands. Application of the purification tags in the protein production process can help to save time and cost, but the design and application of tagged fusion proteins are challenging. An appropriate tagging strategy must provide sufficient expression yield and high purity for the final protein products while preserving their native structure and function. Thanks to the recent advances in the bioinformatics and emergence of high-throughput techniques (e.g. SEREX), many new tags are introduced to the market. A variety of interfering and non-interfering tags have currently broadened their application scope beyond the traditional use as a simple purification tool. They can take part in many biochemical and analytical features and act as solubility and protein expression enhancers, probe tracker for online visualization, detectors of post-translational modifications, and carrier-driven tags. Given the variability and growing number of the purification tags, here we reviewed the protein- and peptide-structured purification tags used in the affinity, ion-exchange, reverse phase, and immobilized metal ion affinity chromatographies. We highlighted the demand for purification tags in the pharmaceutical industry and discussed the impact of self-cleavable tags, aggregating tags, and nanotechnology on both the column-based and column-free purification techniques.
Collapse
Affiliation(s)
- Mohammad Mahmoudi Gomari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Saraygord-Afshari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Marziye Farsimadan
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Neda Rostami
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Iran
| | - Shahin Aghamiri
- Student research committee, Department of medical biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad M Farajollahi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Jäger VD, Lamm R, Küsters K, Ölçücü G, Oldiges M, Jaeger KE, Büchs J, Krauss U. Catalytically-active inclusion bodies for biotechnology-general concepts, optimization, and application. Appl Microbiol Biotechnol 2020; 104:7313-7329. [PMID: 32651598 PMCID: PMC7413871 DOI: 10.1007/s00253-020-10760-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022]
Abstract
Bacterial inclusion bodies (IBs) have long been considered as inactive, unfolded waste material produced by heterologous overexpression of recombinant genes. In industrial applications, they are occasionally used as an alternative in cases where a protein cannot be expressed in soluble form and in high enough amounts. Then, however, refolding approaches are needed to transform inactive IBs into active soluble protein. While anecdotal reports about IBs themselves showing catalytic functionality/activity (CatIB) are found throughout literature, only recently, the use of protein engineering methods has facilitated the on-demand production of CatIBs. CatIB formation is induced usually by fusing short peptide tags or aggregation-inducing protein domains to a target protein. The resulting proteinaceous particles formed by heterologous expression of the respective genes can be regarded as a biologically produced bionanomaterial or, if enzymes are used as target protein, carrier-free enzyme immobilizates. In the present contribution, we review general concepts important for CatIB production, processing, and application. KEY POINTS: • Catalytically active inclusion bodies (CatIBs) are promising bionanomaterials. • Potential applications in biocatalysis, synthetic chemistry, and biotechnology. • CatIB formation represents a generic approach for enzyme immobilization. • CatIB formation efficiency depends on construct design and expression conditions.
Collapse
Affiliation(s)
- Vera D Jäger
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, Jülich, 52425, Germany
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, Espoo, 02150, Finland
| | - Robin Lamm
- Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, Jülich, 52425, Germany
- AVT-Chair for Biochemical Engineering, RWTH Aachen University, Aachen, 52074, Germany
| | - Kira Küsters
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
- Institute of Biotechnology, RWTH Aachen University, 52074, Aachen, Germany
| | - Gizem Ölçücü
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Marco Oldiges
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
- Institute of Biotechnology, RWTH Aachen University, 52074, Aachen, Germany
| | - Karl-Erich Jaeger
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, Jülich, 52425, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Jochen Büchs
- Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, Jülich, 52425, Germany
- AVT-Chair for Biochemical Engineering, RWTH Aachen University, Aachen, 52074, Germany
| | - Ulrich Krauss
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
- Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, Jülich, 52425, Germany.
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany.
| |
Collapse
|
11
|
Sampaio de Oliveira KB, Leite ML, Rodrigues GR, Duque HM, da Costa RA, Cunha VA, de Loiola Costa LS, da Cunha NB, Franco OL, Dias SC. Strategies for recombinant production of antimicrobial peptides with pharmacological potential. Expert Rev Clin Pharmacol 2020; 13:367-390. [PMID: 32357080 DOI: 10.1080/17512433.2020.1764347] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION The need to develop new drugs for the control of pathogenic microorganisms has redoubled efforts to prospect for antimicrobial peptides (AMPs) from natural sources and to characterize its structure and function. These molecules present a broad spectrum of action against different microorganisms and frequently present promiscuous action, with anticancer and immunomodulatory activities. Furthermore, AMPs can be used as biopharmaceuticals in the treatment of hospital-acquired infections and other serious diseases with relevant social and economic impacts.Areas covered: The low yield and the therefore difficult extraction and purification process in AMPs are problems that limit their industrial application and scientific research. Thus, optimized heterologous expression systems were developed to significantly boost AMP yields, allow high efficiency in purification and structural optimization for the increase of therapeutic activity.Expert opinion: This review provides an update on recent developments in the recombinant production of ribosomal and non-ribosomal synthesis of AMPs and on strategies to increase the expression of genes encoding AMPs at the transcriptional and translational levels and regulation of the post-translational modifications. Moreover, there are detailed reports of AMPs that have already reached marketable status or are in the pipeline under advanced stages of preclinical testing.
Collapse
Affiliation(s)
- Kamila Botelho Sampaio de Oliveira
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Michel Lopes Leite
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Gisele Regina Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Rosiane Andrade da Costa
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Victor Albuquerque Cunha
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Lorena Sousa de Loiola Costa
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Nicolau Brito da Cunha
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Octavio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil.,Universidade de Brasília, Pós-graduação em Patologia Molecular, Campus Darcy Ribeiro , Brasília, Brazil.,S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco , Campo Grande, Mato Grosso do Sul, Brazil
| | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil.,Universidade de Brasília, Pós-graduação em Biologia Animal, Campus Darcy Ribeiro , Brasília, Brazil
| |
Collapse
|
12
|
Centore R, Totsingan F, Amason AC, Lyons S, Zha RH, Gross RA. Self-Assembly-Assisted Kinetically Controlled Papain-Catalyzed Formation of mPEG- b-Phe(Leu) x. Biomacromolecules 2020; 21:493-507. [PMID: 31820938 DOI: 10.1021/acs.biomac.9b01237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Self-assembling peptide materials are promising next-generation materials with applications that include tissue engineering scaffolds, drug delivery, bionanomedicine, and enviro-responsive materials. Despite these advances, synthetic methods to form peptides and peptide-polymer conjugates still largely rely on solid-phase peptide synthesis (SPPS) and N-carboxyanhydride ring-opening polymerization (NCA-ROP), while green methods remain largely undeveloped. This work demonstrates a protease-catalyzed peptide synthesis (PCPS) capable of directly grafting leucine ethyl ester (Leu-OEt) from the C-terminus of a methoxy poly(ethylene glycol)-phenylalanine ethyl ester macroinitiator in a one-pot, aqueous reaction. By using the natural tendency of the growing hydrophobic peptide segment to self-assemble, a large narrowing of the (Leu)x distributions for both mPEG45-b-Phe(Leu)x and oligo(Leu)x coproducts, relative to oligo(Leu)x synthesized in the absence of a macroinitiator (mPEG45-Phe-OEt), was achieved. A mechanism is described where in situ β-sheet coassembly of mPEG45-b-Phe(Leu)x and oligo(Leu)x coproducts during polymerization prevents peptide hydrolysis, providing a means to control the degree of polymerization (DP) and dispersity of diblock (Leu)x segments (matrix-assisted laser desorption time-of-flight (MALDI-TOF) x = 5.1, dispersity ≤ 1.02). The use of self-assembly to control the uniformity of peptides synthesized by PCPS paves the way for precise peptide block copolymer architectures with various polymer backbones and amino acid compositions synthesized by a green process.
Collapse
|
13
|
Mahmoodi S, Pourhassan-Moghaddam M, Wood DW, Majdi H, Zarghami N. Current affinity approaches for purification of recombinant proteins. ACTA ACUST UNITED AC 2019. [DOI: 10.1080/23312025.2019.1665406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Sahar Mahmoodi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Pourhassan-Moghaddam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - David W. Wood
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Hasan Majdi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Tokunaga M, Arakawa T, Tokunaga Y, Sugimoto Y, Ishibashi M. Insoluble expression of highly soluble halophilic metal binding protein for metal ion biosorption: Application of aggregation-prone peptide from hen egg white lysozyme. Protein Expr Purif 2019; 156:50-57. [PMID: 30615940 DOI: 10.1016/j.pep.2019.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 01/01/2019] [Indexed: 02/06/2023]
Abstract
Insoluble expression of intrinsically soluble proteins with native activity is potentially a promising alternative to soluble expression of folded protein or insoluble expression of unfolded protein requiring refolding. Here, we attempted to express highly soluble halophilic His-rich metal binding protein (HP) as insoluble inclusion bodies with native metal-binding activity using insolubilizing nona-peptide (Ins), GILQINSRW, derived from hen egg white lysozyme (His-InsHP). About 80% of expressed His-InsHP was localized in inclusion bodies in Na-phosphate/NaCl buffer, pH 7.4, while His-HP without Ins peptide was exclusively expressed in soluble supernatant. We report expression, purification and characterization of this insoluble His-InsHP, and its possible application for efficient biosorption and recovery of environmental metal ions, for example, by using whole bacterial cells expressing insoluble His-InsHP as a new cost-effective metal ion-adsorbent.
Collapse
Affiliation(s)
- Masao Tokunaga
- Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
| | - Tsutomu Arakawa
- Alliance Protein Laboratories, 6042 Cornerstone Court West, Suite A, San Diego, CA, 92121, USA
| | - Yuhei Tokunaga
- Laboratory of Biochemistry and Bioscience, The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Yasushi Sugimoto
- Laboratory of Biochemistry and Bioscience, The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Matsujiro Ishibashi
- Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| |
Collapse
|
15
|
Liu H, Zhou H, Du H, Xiao Q, Pistolozzi M. Kinetically-controlled mechanism-based isolation of metabolic serine hydrolases in active form from complex proteomes: butyrylcholinesterase as a case study. RSC Adv 2019; 9:38505-38519. [PMID: 35540231 PMCID: PMC9075836 DOI: 10.1039/c9ra07583f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/18/2019] [Indexed: 12/02/2022] Open
Abstract
In this work an activity-based probe containing a carbamate group was designed to isolate human butyrylcholinesterase (hBChE), a metabolic serine hydrolase (mSH), from complex proteomes. The method took advantage of the native interaction mechanism of mSHs with carbamate pseudo-substrates for temporarily capturing the enzyme on a resin functionalized with the carbamate probe and releasing the enzyme in active form after removal of the contaminating proteins. The isolation relied on the possibility of manipulating the carbamylation and decarbamylation kinetics favoring the former during the capture and wash steps and the latter in the release step. The designed probe captured and released all the active hBChE isoenzymes present in plasma with high selectivity (up to ∼2000-fold purification) and reasonable yields (17% to 36%). The parameters affecting the performance were the incubation time used in the load and elution steps, the plasma to resin volumetric ratio, the elution temperature and the nature and concentration of the eluting agent. The carbamate resin could be prepared either by coupling a fully synthesized probe with an activated resin or by building the probe onto the resin by a step-by-step procedure, without major differences in performance between the two routes. The prepared resins allowed to process up to about 8.5 mL of plasma per g of resin with constant performance. Since the method was based on the general catalytic cycle of mSHs, we expect this approach to be applicable to other enzymes of the family, by selecting a suitable target-selective feature to link to the carbamate group. The modulation of the equilibrium between carbamylation and decarbamylation kinetics is used to isolate a model metabolic serine hydrolase.![]()
Collapse
Affiliation(s)
- Hui Liu
- School of Biology & Biological Engineering
- South China University of Technology
- Higher Education Mega Center
- Guangzhou
- People's Republic of China
| | - Huimin Zhou
- School of Biology & Biological Engineering
- South China University of Technology
- Higher Education Mega Center
- Guangzhou
- People's Republic of China
| | - Huaqiao Du
- School of Biology & Biological Engineering
- South China University of Technology
- Higher Education Mega Center
- Guangzhou
- People's Republic of China
| | - Qiaoling Xiao
- School of Biology & Biological Engineering
- South China University of Technology
- Higher Education Mega Center
- Guangzhou
- People's Republic of China
| | - Marco Pistolozzi
- School of Biology & Biological Engineering
- South China University of Technology
- Higher Education Mega Center
- Guangzhou
- People's Republic of China
| |
Collapse
|