1
|
Melian C, Ploper D, Chehín R, Vignolo G, Castellano P. Impairment of Listeria monocytogenes biofilm developed on industrial surfaces by Latilactobacillus curvatus CRL1579 bacteriocin. Food Microbiol 2024; 121:104491. [PMID: 38637093 DOI: 10.1016/j.fm.2024.104491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 04/20/2024]
Abstract
The effect of lactocin AL705, bacteriocin produced by Latilactobacillus (Lat.) curvatus CRL1579 against Listeria biofilms on stainless steel (SS) and polytetrafluoroethylene (PTFE) coupons at 10 °C was investigated. L. monocytogenes FBUNT showed the greatest adhesion on both surfaces associated to the hydrophobicity of cell surface. Partially purified bacteriocin (800 UA/mL) effectively inhibited L. monocytogenes preformed biofilm through displacement strategy, reducing the pathogen by 5.54 ± 0.26 and 4.74 ± 0.05 log cycles at 3 and 6 days, respectively. The bacteriocin-producer decreased the pathogen biofilm by ∼2.84 log cycles. Control and Bac- treated samples reached cell counts of 7.05 ± 0.18 and 6.79 ± 0.06 log CFU/cm2 after 6 days of incubation. Confocal scanning laser microscopy (CLSM) allowed visualizing the inhibitory effect of lactocin AL705 on L. monocytogenes preformed biofilms under static and hydrodynamic flow conditions. A greater effect of the bacteriocin was found at 3 days independently of the surface matrix and pathogen growth conditions at 10 °C. As a more realistic approach, biofilm displacement strategy under continuous flow conditions showed a significant loss of biomass, mean thickness and substratum coverage of pathogen biofilm. These findings highlight the anti-biofilm capacity of lactocin AL705 and their potential application in food industries.
Collapse
Affiliation(s)
- Constanza Melian
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, Tucumán, Argentina
| | - Diego Ploper
- IMMCA (Instituto de Investigación en Medicina Molecular y Celular Aplicada, CONICET-Universidad Nacional de Tucumán-Ministerio de Salud Pública, Gobierno de Tucumán, Pje. Dorrego 1080, San Miguel de Tucumán, 4000, Tucumán, Argentina
| | - Rosana Chehín
- IMMCA (Instituto de Investigación en Medicina Molecular y Celular Aplicada, CONICET-Universidad Nacional de Tucumán-Ministerio de Salud Pública, Gobierno de Tucumán, Pje. Dorrego 1080, San Miguel de Tucumán, 4000, Tucumán, Argentina
| | - Graciela Vignolo
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, Tucumán, Argentina
| | - Patricia Castellano
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, Tucumán, Argentina.
| |
Collapse
|
2
|
Wu M, Dong Q, Ma Y, Yang S, Zohaib Aslam M, Liu Y, Li Z. Potential antimicrobial activities of probiotics and their derivatives against Listeria monocytogenes in food field: A review. Food Res Int 2022; 160:111733. [DOI: 10.1016/j.foodres.2022.111733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 01/04/2023]
|
3
|
Santos FH, Panda SK, Ferreira DCM, Dey G, Molina G, Pelissari FM. Targeting infections and inflammation through micro and nano-nutraceuticals. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
4
|
Dong Q, Lu X, Gao B, Liu Y, Aslam MZ, Wang X, Li Z. Lactiplantibacillus plantarum subsp. plantarum and Fructooligosaccharides Combination Inhibits the Growth, Adhesion, Invasion, and Virulence of Listeria monocytogenes. Foods 2022; 11:170. [PMID: 35053902 PMCID: PMC8775058 DOI: 10.3390/foods11020170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 02/07/2023] Open
Abstract
Listeria monocytogenes is a foodborne pathogen responsible for many food outbreaks worldwide. This study aimed to investigate the single and combined effect of fructooligosaccharides (FOS) and Lactiplantibacillus plantarum subsp. plantarum CICC 6257 (L. plantarum) on the growth, adhesion, invasion, and virulence of gene expressions of Listeria monocytogenes 19112 serotype 4b (L. monocytogenes). Results showed that L. plantarum combined with 2% and 4% (w/v) FOS significantly (p < 0.05) inhibited the growth of L. monocytogenes (3-3.5 log10 CFU/mL reduction) at the incubation temperature of 10 °C and 25 °C. Under the same combination condition, the invasion rates of L. monocytogenes to Caco-2 and BeWo cells were reduced more than 90% compared to the result of the untreated group. After L. plantarum was combined with the 2% and 4% (w/v) FOS treatment, the gene expression of actin-based motility, sigma factor, internalin A, internalin B, positive regulatory factor A, and listeriolysin O significantly (p < 0.05) were reduced over 91%, 77%, 92%, 89%, 79%, and 79% compared to the result of the untreated group, respectively. The inhibition level of the L. plantarum and FOS combination against L. monocytogenes was higher than that of FOS or L. plantarum alone. Overall, these results indicated that the L. plantarum and FOS combination might be an effective formula against L. monocytogenes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhuosi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Q.D.); (X.L.); (B.G.); (Y.L.); (M.Z.A.); (X.W.)
| |
Collapse
|
5
|
He Y, Yang Q, Tian L, Zhang Z, Qiu L, Tao X, Wei H. Protection of surface layer protein from Enterococcus faecium WEFA23 against Listeria monocytogenes CMCC54007 infection by modulating intestinal permeability and immunity. Appl Microbiol Biotechnol 2021; 105:4269-4284. [PMID: 33990856 DOI: 10.1007/s00253-021-11240-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/04/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
Enterococcus faecium WEFA23 was previously found effectively against adherence and colonization of Listeria monocytogenes CMCC54007, which might be closely related to its surface layer protein (SLP). In this study, the protective of SLP of E. faecium WEFA23 against infection of L. monocytogenes CMCC54007 was systemically investigated. In vitro assay showed that SLP actively inhibited L. monocytogenes internalization into Caco-2 cell line, with decreasing mRNA level of pro-inflammation cytokines and virulence factors and restoring destroyed intestinal barrier. In vivo assay through excluding SLP of E. faecium WEFA23 by 5 M LiCl represented that SLP increased body weight, reduced mortality and cell counts of L. monocytogenes CMCC54007 in tissues of mice. Further researches showed that SLP protected against L. monocytogenes CMCC54007 infection by modulation of intestinal permeability and immunity, namely, it decreased fluorescein isothiocyanate (FITC)-Dextran in serum, ameliorated destroyed colon structure, and increased number of goblet cells and protein level of TJ protein (Claudin-1, Occludin, and ZO-1) in colon. For immunity, SLP decreased number of CD4+ and CD8+ T cells in liver, mRNA level, and content of pro-inflammatory factors IL-6, IL-1β, IFN-γ ,TNF-α, and NO, and restored the structure of liver and spleen. Key Points•SLP of E. faecium inhibited L. monocytogenes internalization and colonization•SLP of E. faecium ameliorated host intestinal barrier dysfunction•SLP of E. faecium decreased pro-inflammatory cytokines and cells.
Collapse
Affiliation(s)
- Yao He
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing Donglu, Nanchang, Jiangxi, 330047, People's Republic of China
| | - Qin Yang
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing Donglu, Nanchang, Jiangxi, 330047, People's Republic of China
| | - Linlin Tian
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing Donglu, Nanchang, Jiangxi, 330047, People's Republic of China
| | - Zhihong Zhang
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing Donglu, Nanchang, Jiangxi, 330047, People's Republic of China
| | - Liang Qiu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, People's Republic of China
| | - Xueying Tao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, People's Republic of China
| | - Hua Wei
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing Donglu, Nanchang, Jiangxi, 330047, People's Republic of China.
| |
Collapse
|
6
|
Kalaycı Yüksek F, Gümüş D, Gündoğan Gİ, Anğ Küçüker M. Cell-Free Lactobacillus sp Supernatants Modulate Staphylococcus aureus Growth, Adhesion and Invasion to Human Osteoblast (HOB) Cells. Curr Microbiol 2020; 78:125-132. [PMID: 33108492 DOI: 10.1007/s00284-020-02247-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/09/2020] [Indexed: 11/24/2022]
Abstract
The increase of antibiotic resistance has become a problem. Probiotic bacteria play an important role in preventive/supportive medicine. Therefore, we examined the inhibitory effects of four different Lactobacillus species' (L. acidophilus-La, L. plantarum-Lp, L. fermentum-Lf and L. rhamnosus-Lr) cell-free supernatants (CFSs) on growth, adhesion, invasion, and biofilm formation of Staphylococcus aureus and effects of S. aureus, CFSs, and S. aureus-CFSs co-existence on human osteoblast (HOB) cell viability. Growth alterations were measured spectrophotometrically. Adhesive/invasive bacterial counts were detected by colony counting. Biofilm was evaluated using microtiter plate assay. The MTT assay was used for detection of HOB cell viability. The growth of MSSA significantly (P < 0.01) decreased in the presence of two CFSs (Lf and Lr) (P < 0.01); the growth of MRSA significantly (P < 0.05) reduced in the presence of La CFSs. All tested CFSs were found to reduce adhesion and invasion of MSSA (P < 0.0001). The adhesion of MRSA was enhanced (P < 0.0001) in the presence of all CFSs except La and the invasion of MRSA was decreased (P < 0.01) in the presence of Lr and Lf CFSs. All tested CFSs were shown to inhibit biofilm formation significantly (P < 0.0001). The reduction of S. aureus infected HOB cell viability and exposed to all CFSs except Lr that was found to be significant (P < 0.0001). The viability of HOB cell during co-incubation with MSSA and CFSs was shown to be decreased significantly. However co-existence of MRSA and CFSs did not alter HOB cell viability. These results suggested that lactobacilli as probiotics have low protective effects on MRSA-infected host cells.
Collapse
Affiliation(s)
- Fatma Kalaycı Yüksek
- Department of Medical Microbiology, Medical Faculty, Istanbul Yeni Yüzyıl University, Istanbul, Turkey.
| | - Defne Gümüş
- Department of Medical Microbiology, Medical Faculty, Istanbul Yeni Yüzyıl University, Istanbul, Turkey
| | - Gül İpek Gündoğan
- Department of Histology and Embryology, Medical Faculty, Istanbul Yeni Yüzyıl University, Istanbul, Turkey
| | - Mine Anğ Küçüker
- Department of Medical Microbiology, Medical Faculty, Istanbul Yeni Yüzyıl University, Istanbul, Turkey
| |
Collapse
|
7
|
Silva DR, Sardi JDCO, Pitangui NDS, Roque SM, Silva ACBD, Rosalen PL. Probiotics as an alternative antimicrobial therapy: Current reality and future directions. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104080] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
8
|
ALP D, KULEAŞAN H. Determination of competition and adhesion abilities of lactic acid bacteria against gut pathogens in a whole-tissue model. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2020; 39:250-258. [PMID: 33117624 PMCID: PMC7573109 DOI: 10.12938/bmfh.2020-033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/11/2020] [Indexed: 01/14/2023]
Abstract
In an intestinal system with a balanced microbial diversity, lactic acid bacteria (LAB) are the key element which prevents the colonization and invasion of gut pathogens. Adhesion ability is important for the colonization and competition abilities of LAB. The aim of this study was to determine the adhesion and competition abilities of LAB by using a whole-tissue model. Indigenous strains were isolated from spontaneously fermented foods like cheese and pickles. The aggregation and competition abilities of the isolates were determined, as well as their resistance to gastrointestinal conditions. Four Lactobacillus strains and one Weissella strain were found to be highly competitive against three major gut pathogens, namely Clostridium difficile, Listeria monocytogenes and Salmonella Enteritidis. Tested strains decreased the number of pathogens to below their disease-causing levels. According to the results, the numbers of C. difficile and L. monocytogenes bacteria decreased by an average of 3 log, and their adhesion rates decreased by approximately 50%. However, the number of S. Enteritidis bacteria was decreased by only 1 log compared with its initial number. We thought that the weak effect on Salmonella was due to its possession of many virulence factors. The results showed that natural isolates from sources other than human specimens like the Weissella strain in this study were quite competent when compared with the human isolates in terms of their adhesion to intestines and resistance to gastrointestinal tract conditions. It was also revealed that a whole-tissue model with all-natural layers can be successfully used in adhesion and competition tests.
Collapse
Affiliation(s)
- Duygu ALP
- Department of Food Engineering, Faculty of Engineering,
Suleyman Demirel University, Isparta, Isparta 32260, Turkey
| | - Hakan KULEAŞAN
- Department of Food Engineering, Faculty of Engineering,
Suleyman Demirel University, Isparta, Isparta 32260, Turkey
| |
Collapse
|
9
|
First Insight into the Probiotic Properties of Ten Streptococcus thermophilus Strains Based on In Vitro Conditions. Curr Microbiol 2019; 77:343-352. [DOI: 10.1007/s00284-019-01840-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/03/2019] [Indexed: 01/20/2023]
|
10
|
Tang C, Lu Z. Health promoting activities of probiotics. J Food Biochem 2019; 43:e12944. [PMID: 31368544 DOI: 10.1111/jfbc.12944] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022]
Abstract
In recent years, probiotics have received increasing attention and become one type of popular functional food because of their many biological functions. Among these desirable biological functions, the immune regulation, antioxidative activities, and antimicrobial effects are essential properties to maintain host health. Probiotics can regulate the immune system and improve the antioxidative system by producing microbial components and metabolites. Meanwhile, probiotics also possess antimicrobial abilities owing to their competition for nutrient requirements and mucus adherence, reducing pathogenic toxins, producing antimicrobial metabolites (short-chain fatty acids, bacteriocins, reuterin, linoleic acid, and secondary bile acids) and enhancing intestinal, or systemic immunity. Therefore, probiotics could be used to alleviate heavy metal toxicity and metabolic disorders by improving immunity, the antioxidative system, and intestinal micro-environment. This comprehensive review mainly highlights the potential health promoting activities of probiotics based on their antioxidative, antimicrobial, and immune regulatory effects. PRACTICAL APPLICATIONS: The antioxidative defense and the immune system are essential to maintain human health. However, many factors may result in microbial dysbiosis in the gut, which subsequently leads to pathogenic expansion, oxidative stress, and inflammatory responses. Therefore, it is important to explore beneficial foods to prevent or suppress these abnormal responses. Successful application of probiotics in the functional foods has attracted increasing attention due to their immune regulatory, antioxidative, and antimicrobial properties. The aim of this review is to introduce immune regulatory antioxidative and antimicrobial effects of probiotics, which provides some basic theories for scientific research and development of potential functional foods.
Collapse
Affiliation(s)
- Chao Tang
- Laboratory of Enzyme Engineering, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhaoxin Lu
- Laboratory of Enzyme Engineering, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Oligosaccharides as co-encapsulating agents: effect on oral Lactobacillus fermentum survival in a simulated gastrointestinal tract. Biotechnol Lett 2018; 41:263-272. [DOI: 10.1007/s10529-018-02634-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/04/2018] [Indexed: 01/28/2023]
|