1
|
Xu Y, Xu T, Huang C, Amakye WK, Liu L, Fan J, Zhu Y, Yao M, Ren J. Investigating immune-modulatory function of α-glucopyranose-rich compound polysaccharides by MC38-N4/OT-I co-culture system. Int J Biol Macromol 2024; 278:134941. [PMID: 39173810 DOI: 10.1016/j.ijbiomac.2024.134941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
The potential antitumor function of polysaccharides is well accepted, it is unclear whether polysaccharides have immunoregulatory effect on CD8+ T lymphocyte cells to attack tumor cells. To evaluate the CD8+ T function enhancing role of polysaccharide compounds, the MC38-N4/OT-I co-culture system was established. The synergistic and complementary immune effect of α-glucopyranose-rich compound polysaccharides can be achieved by manipulating the antigen-specific T-cell expansion capacity and efficacy. This study was designed to investigate the antitumor-enhancement activity of a α-glucopyranose-rich compound polysaccharides by determining the activation of CD8+ T cells in a co-culture system. Compared to the control group (42.5 % ± 0.72 %), the specific α-glucopyranose-rich compound polysaccharides, comprising Agaricus blazei Murill, Grifola frondosa and Pericarpium Citri Reticulatae, demonstrated a significant decrease (20.4 % ± 1.23 %, p < 0.05) in the survival rate of MC38-N4 cells in the co-culture system. Additionally, the α-glucopyranose-rich compound polysaccharides resulted in a substantial increase (p < 0.01) in the proportion of CD8+ T cells and CD62L+ central memory T cells, which is a less differentiated T cell subset with high immune activity. Collectively, we reported that specific polysaccharide combination, which remodel the function of cytotoxic T cells and provided a basis for improving immune functions by using the specific types of polysaccharides.
Collapse
Affiliation(s)
- Yongzhao Xu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, PR China
| | - Tianxiong Xu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, PR China
| | - Chujun Huang
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, PR China
| | - William Kwame Amakye
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, PR China
| | - Lun Liu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, PR China
| | - Junhao Fan
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, PR China
| | - Ying Zhu
- Infinitus (China) Ltd., Guangzhou, Guangdong 510665, PR China
| | - Maojin Yao
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China.
| | - Jiaoyan Ren
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, PR China.
| |
Collapse
|
2
|
Li J, Vranjkovic A, Read D, Delaney SP, Stanford WL, Cooper CL, Crawley AM. Lasting differential gene expression of circulating CD8 T cells in chronic HCV infection with cirrhosis identifies a role for Hedgehog signaling in cellular hyperfunction. Front Immunol 2024; 15:1375485. [PMID: 38887299 PMCID: PMC11180750 DOI: 10.3389/fimmu.2024.1375485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/19/2024] [Indexed: 06/20/2024] Open
Abstract
Background The impact of chronic hepatic infection on antigen non-specific immune cells in circulation remains poorly understood. We reported lasting global hyperfunction of peripheral CD8 T cells in HCV-infected individuals with cirrhosis. Whether gene expression patterns in bulk CD8 T cells are associated with the severity of liver fibrosis in HCV infection is not known. Methods RNA sequencing of blood CD8 T cells from treatment naïve, HCV-infected individuals with minimal (Metavir F0-1 ≤ 7.0 kPa) or advanced fibrosis or cirrhosis (F4 ≥ 12.5 kPa), before and after direct-acting antiviral therapy, was performed. CD8 T cell function was assessed by flow cytometry. Results In CD8 T cells from pre-DAA patients with advanced compared to minimal fibrosis, Gene Ontology analysis and Gene Set Enrichment Analysis identified differential gene expression related to cellular function and metabolism, including upregulated Hedgehog (Hh) signaling, IFN-α, -γ, TGF-β response genes, apoptosis, apical surface pathways, phospholipase signaling, phosphatidyl-choline/inositol activity, and second-messenger-mediated signaling. In contrast, genes in pathways associated with nuclear processes, RNA transport, cytoskeletal dynamics, cMyc/E2F regulation, oxidative phosphorylation, and mTOR signaling, were reduced. Hh signaling pathway was the top featured gene set upregulated in cirrhotics, wherein hallmark genes GLI1 and PTCH1 ranked highly. Inhibition of Smo-dependent Hh signaling ablated the expression of IFN-γ and perforin in stimulated CD8 T cells from chronic HCV-infected patients with advanced compared to minimal fibrosis. CD8 T cell gene expression profiles post-DAA remained clustered with pre-DAA profiles and disparately between advanced and minimal fibrosis, suggesting a persistent perturbation of gene expression long after viral clearance. Conclusions This analysis of bulk CD8 T cell gene expression in chronic HCV infection suggests considerable reprogramming of the CD8 T cell pool in the cirrhotic state. Increased Hh signaling in cirrhosis may contribute to generalized CD8 T cell hyperfunction observed in chronic HCV infection. Understanding the lasting nature of immune cell dysfunction may help mitigate remaining clinical challenges after HCV clearance and more generally, improve long term outcomes for individuals with severe liver disease.
Collapse
Affiliation(s)
- Jiafeng Li
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Agatha Vranjkovic
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Daniel Read
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Sean P. Delaney
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - William L. Stanford
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Curtis L. Cooper
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
- Division of Infectious Diseases, The Ottawa Hospital, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Angela M. Crawley
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
3
|
Amissah OB, Basnet R, Chen W, Habimana JDD, Baiden BE, Owusu OA, Saeed BJ, Li Z. Enhancing antitumor response by efficiently generating large-scale TCR-T cells targeting a single epitope across multiple cancer antigens. Cell Immunol 2024; 399-400:104827. [PMID: 38733699 DOI: 10.1016/j.cellimm.2024.104827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
The need to contrive interventions to curb the rise in cancer incidence and mortality is critical for improving patients' prognoses. Adoptive cell therapy is challenged with quality large-scale production, heightening its production cost. Several cancer types have been associated with the expression of highly-immunogenic CTAG1 and CTAG2 antigens, which share common epitopes. Targeting two antigens on the same cancer could improve the antitumor response of TCR-T cells. In this study, we exploited an efficient way to generate large-fold quality TCR-T cells and also demonstrated that the common epitopes of CTAG1 and CTAG2 antigens provide an avenue for improved cancer-killing via dual-antigen-epitope targeting. Our study revealed that xeno/sera-free medium could expand TCR-T cells to over 500-fold, posing as a better replacement for FBS-supplemented media. Human AB serum was also shown to be a good alternative in the absence of xeno/sera-free media. Furthermore, TCR-T cells stimulated with beads-coated T-activator showed a better effector function than soluble T-activator stimulated TCR-T cells. Additionally, TCR-T cells that target multiple antigens in the same cancer yield better anticancer activity than those targeting a single antigen. This showed that targeting multiple antigens with a common epitope may enhance the antitumor response efficacy of T cell therapies.
Collapse
Affiliation(s)
- Obed Boadi Amissah
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Rajesh Basnet
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Wenfang Chen
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jean de Dieu Habimana
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Belinda Edwina Baiden
- College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Osei Asibey Owusu
- Department of Clinical and Medical Sciences, University of Exeter, Exeter, UK
| | - Babangida Jabir Saeed
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhiyuan Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China; GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha 410013, China.
| |
Collapse
|
4
|
Lee JH, Lee BH, Jeong S, Joh CSY, Nam HJ, Choi HS, Sserwadda H, Oh JW, Park CG, Jin SP, Kim HJ. Single-cell RNA sequencing identifies distinct transcriptomic signatures between PMA/ionomycin- and αCD3/αCD28-activated primary human T cells. Genomics Inform 2023; 21:e18. [PMID: 37704208 PMCID: PMC10326540 DOI: 10.5808/gi.23009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 07/08/2023] Open
Abstract
Immunologists have activated T cells in vitro using various stimulation methods, including phorbol myristate acetate (PMA)/ionomycin and αCD3/αCD28 agonistic antibodies. PMA stimulates protein kinase C, activating nuclear factor-κB, and ionomycin increases intracellular calcium levels, resulting in activation of nuclear factor of activated T cell. In contrast, αCD3/αCD28 agonistic antibodies activate T cells through ZAP-70, which phosphorylates linker for activation of T cell and SH2-domain-containing leukocyte protein of 76 kD. However, despite the use of these two different in vitro T cell activation methods for decades, the differential effects of chemical-based and antibody-based activation of primary human T cells have not yet been comprehensively described. Using single-cell RNA sequencing (scRNA-seq) technologies to analyze gene expression unbiasedly at the single-cell level, we compared the transcriptomic profiles of the non-physiological and physiological activation methods on human peripheral blood mononuclear cell-derived T cells from four independent donors. Remarkable transcriptomic differences in the expression of cytokines and their respective receptors were identified. We also identified activated CD4 T cell subsets (CD55+) enriched specifically by PMA/ionomycin activation. We believe this activated human T cell transcriptome atlas derived from two different activation methods will enhance our understanding, highlight the optimal use of these two in vitro T cell activation assays, and be applied as a reference standard when analyzing activated specific disease-originated T cells through scRNA-seq.
Collapse
Affiliation(s)
- Jung Ho Lee
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Brian H Lee
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Soyoung Jeong
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Christine Suh-Yun Joh
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Hyo Jeong Nam
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Hyun Seung Choi
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Henry Sserwadda
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Ji Won Oh
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Chung-Gyu Park
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Seon-Pil Jin
- Department of Dermatology, Seoul National University Hospital, Seoul 03080, Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Korea
- Medical Research Center, Institute of Human-Environmental Interface Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hyun Je Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
- Genomic Medicine Institute, Seoul National University College of Medicine, Seoul 03080, Korea
- Seoul National University Hospital, Seoul 03080, Korea
| |
Collapse
|
5
|
Ouédraogo O, Balthazard R, Mamane VH, Jamann H, Millette F, Daigneault A, Arbour N, Larochelle C. Investigating anti-inflammatory and immunomodulatory properties of brivaracetam and lacosamide in experimental autoimmune encephalomyelitis (EAE). Epilepsy Res 2023; 192:107125. [PMID: 36963302 DOI: 10.1016/j.eplepsyres.2023.107125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/20/2023] [Accepted: 03/13/2023] [Indexed: 03/15/2023]
Abstract
PURPOSE Inflammation plays a role in drug-resistant epilepsy (DRE). We have previously reported an increased proportion of CD4 T cells displaying a pro-inflammatory profile in the peripheral blood of adults with DRE. Specific anti-epileptic drugs (AEDs) exhibit immunomodulatory properties that could increase the risk of infections but also contribute to their beneficial impact on DRE and other neurological diseases. The impact of novel generation AEDs on the profile of immune cells and on neuroinflammatory processes remains unclear. METHODS We compared the influence of brivaracetam and lacosamide on the activation of human and murine peripheral immune cells in vitro and in vivo in active experimental autoimmune encephalomyelitis (EAE), a common mouse model of central nervous system inflammation. RESULTS We found that brivaracetam and lacosamide at 2.5 μg/ml did not impair the survival and activation of human immune cells, but a higher dose of 25 μg/ml decreased mitogen-induced proliferation of CD8 T cells in vitro. Exposure to high doses of brivaracetam, and to a lesser extent lacosamide, reduced the proportion of CD25+ and CD107a+ CD8+ human T cells in vitro, and the frequency of CNS-infiltrating CD8+ T cells at EAE onset and CD11b+ myeloid cells at peak in vivo. Prophylactic administration of brivaracetam or lacosamide did not delay EAE onset but significantly improved the clinical course in the chronic phase of EAE compared to control. CONCLUSION Novel generation AEDs do not impair the response to immunization with MOG peptide but improve the course of EAE, possibly through a reduction of neuroaxonal damage.
Collapse
Affiliation(s)
- Oumarou Ouédraogo
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada; Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
| | - Renaud Balthazard
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada; Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
| | - Victoria Hannah Mamane
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada; Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
| | - Hélène Jamann
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada; Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
| | - Florence Millette
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada; Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
| | - Audrey Daigneault
- Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
| | - Nathalie Arbour
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada; Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
| | - Catherine Larochelle
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada; Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada.
| |
Collapse
|
6
|
Zhang K, Li WC, Xie SS, Lin LY, Shen ZW, Ye ZX, Shen W. Preoperative determination of pathological grades of primary single HCC: development and validation of a scoring model. ABDOMINAL RADIOLOGY (NEW YORK) 2022; 47:3468-3477. [PMID: 35842888 DOI: 10.1007/s00261-022-03606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE This study aimed to establish a reliable diagnostic score model for the preoperative determination of pathological grade in HCC based on gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) enhanced MRI and biochemical indicators. METHODS In this retrospective study, we analyzed 139 patients with HCC who underwent Gd-EOB-DTPA MRI between 2014 and 2020, including an establishment cohort of 76 patients and a validation cohort of 63 patients. Based on the imaging features demonstrated on Gd-EOB-DTPA MRI images and biochemical indicators of the establishment cohort, a scoring model based on logistic regression was developed, and compared with postoperative pathological findings in terms of effective determination of pathological grade. The validity of the scoring model was assessed by ROC curves and an independent external validation cohort. RESULTS Three parameters related to pathological grades were identified, including maximum diameter of the tumor, peritumoral hypointensity in the hepatobiliary phase, and [alkaline phosphatase (U/L) + gamma glutamyl transpeptidase (U/L)]/ lymphocyte count (× 109/L) (AGLR) ratios. Based on these three parameters, a scoring model was developed. ROC curve showed that a score of > 5 was set as the threshold for determining pathological grades with accuracy, sensitivity, specificity, PPV, and NPV of 89.5%, 75.0%, 95.1%, 85.7%, and 90.7%, respectively. CONCLUSION The study provided the groundwork for a promising and easily implementable scoring model for preoperative determination of HCC pathological grades, for which further validation should be pursued.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Radiology, Tianjin First Central Hospital, funded by Tianjin Key Medical Discipline (Specialty) Construction Project, Tianjin Institute of imaging medicine, 24 Fukang Road, Nankai District, Tianjin, 300192, China
| | - Wen-Cui Li
- Department of Radiology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Shuang-Shuang Xie
- Department of Radiology, Tianjin First Central Hospital, funded by Tianjin Key Medical Discipline (Specialty) Construction Project, Tianjin Institute of imaging medicine, 24 Fukang Road, Nankai District, Tianjin, 300192, China
| | - Li-Ying Lin
- First Central Clinical College, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Zhi-Wei Shen
- Philips Healthcare, Beijing, The world profit centre, No. 16 Tianze Road, Chaoyang Dustrict, Beijing, 100125, China
| | - Zhao-Xiang Ye
- Department of Radiology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China. .,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Wen Shen
- Department of Radiology, Tianjin First Central Hospital, funded by Tianjin Key Medical Discipline (Specialty) Construction Project, Tianjin Institute of imaging medicine, 24 Fukang Road, Nankai District, Tianjin, 300192, China.
| |
Collapse
|
7
|
Papait A, Silini AR, Gazouli M, Malvicini R, Muraca M, O’Driscoll L, Pacienza N, Toh WS, Yannarelli G, Ponsaerts P, Parolini O, Eissner G, Pozzobon M, Lim SK, Giebel B. Perinatal derivatives: How to best validate their immunomodulatory functions. Front Bioeng Biotechnol 2022; 10:981061. [PMID: 36185431 PMCID: PMC9518643 DOI: 10.3389/fbioe.2022.981061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/12/2022] [Indexed: 11/27/2022] Open
Abstract
Perinatal tissues, mainly the placenta and umbilical cord, contain a variety of different somatic stem and progenitor cell types, including those of the hematopoietic system, multipotent mesenchymal stromal cells (MSCs), epithelial cells and amnion epithelial cells. Several of these perinatal derivatives (PnDs), as well as their secreted products, have been reported to exert immunomodulatory therapeutic and regenerative functions in a variety of pre-clinical disease models. Following experience with MSCs and their extracellular vesicle (EV) products, successful clinical translation of PnDs will require robust functional assays that are predictive for the relevant therapeutic potency. Using the examples of T cell and monocyte/macrophage assays, we here discuss several assay relevant parameters for assessing the immunomodulatory activities of PnDs. Furthermore, we highlight the need to correlate the in vitro assay results with preclinical or clinical outcomes in order to ensure valid predictions about the in vivo potency of therapeutic PnD cells/products in individual disease settings.
Collapse
Affiliation(s)
- Andrea Papait
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ricardo Malvicini
- Department of Women and Children Health, University of Padova, Padova, Italy
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Maurizio Muraca
- Department of Women and Children Health, University of Padova, Padova, Italy
| | - Lorraine O’Driscoll
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
- Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Trinity St. James’s Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Natalia Pacienza
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Wei Seong Toh
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gustavo Yannarelli
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Günther Eissner
- Systems Biology Ireland, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Michela Pozzobon
- Department of Women and Children Health, University of Padova, Padova, Italy
| | - Sai Kiang Lim
- Institute of Medical Biology and Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
8
|
Jiao J, Zhao X, Wang Y, Liang N, Li J, Yang X, Xing J, Zhou L, Li J, Hou R, Li X, Zhang K. Normal mesenchymal stem cells can improve the abnormal function of T cells in psoriasis via upregulating transforming growth factor-β receptor. J Dermatol 2022; 49:988-997. [PMID: 35766154 DOI: 10.1111/1346-8138.16490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/22/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
Psoriasis, a chronic inflammatory skin disease, is a refractory disorder. Previous studies have shown that the imbalance of the T-helper (Th)17/regulatory T cells (Treg) results in the immune imbalance of T cells in psoriatic patients, and that mesenchymal stem cells display an immunosuppressive role by promoting the differentiation of T cells into Treg, leading to a reduction in the proportion of Th17/Treg. Utility of mesenchymal stem cells is becoming a new approach for the treatment of immune disorders. Following co-culture of dermal mesenchymal stromal cells (DMSC) and CD3+ T cells with or without transforming growth factor (TGF)-β receptor inhibitor, the biological function and relative signal pathway of CD3+ T cells were assessed by flow cytometry, transwell, real-time polymerase chain reaction and western blotting, respectively. Normal DMSC were more potent than psoriatic DMSC in inhibition of CD3+ T-cell proliferation, and stimulation of CD3+ T-cell apoptosis than psoriasis DMSC. Moreover, normal DMSC decreased the ratio of Th17/Treg, while enhancing the immunosuppressive effect of Tregs on effector T cells. However, TGF-β receptor (TGF-βR) inhibitor attenuated the effect of normal DMSC on CD3+ T cells and Th17/Treg ratio. Additionally, the normal DMSC were more potent than the psoriatic DMSC in increasing TGF-β receptors and activation of TGF-β/SMAD pathway in psoriatic CD3+ T cells. In conclusion, normal DMSC can partially improve the biological function and immunosuppressive ability of psoriatic CD3+ T cells, possibly via upregulating the TGF-β receptors.
Collapse
Affiliation(s)
- Juanjuan Jiao
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Xincheng Zhao
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Ying Wang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Nannan Liang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Juan Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaohong Yang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianxiao Xing
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Ling Zhou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinhua Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
9
|
Prediction of microvascular invasion in HCC by a scoring model combining Gd-EOB-DTPA MRI and biochemical indicators. Eur Radiol 2022; 32:4186-4197. [DOI: 10.1007/s00330-021-08502-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 11/15/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022]
|
10
|
Lu X, Zhu X, Chen D, Zhou J, Yu J, Xie J, Yan S, Cao H, Li L, Li L. Metabolic profile of irradiated whole blood by chemical isotope-labeling liquid chromatography-mass spectrometry. J Pharm Biomed Anal 2021; 204:114247. [PMID: 34252821 DOI: 10.1016/j.jpba.2021.114247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 01/28/2023]
Abstract
Irradiated blood is a new type of blood product used to prevent transfusion-associated graft-versus-host disease. However, the effects of irradiation on the metabolism of plasma, red blood cells (RBCs), and peripheral blood mononuclear cells (PBMCs) are largely unknown. We developed a workflow for testing metabolic changes in whole blood to determine the impact of irradiation by chemical isotope labeling liquid chromatography-mass spectrometry (CIL LC-MS). Blood parameters, PBMC proliferation and apoptosis were examined before and after irradiation. Next, the amine/phenol metabolites in the blood components were assayed by 12C- and13C-dansylation labeling LC-MS. We identified 1654, 1730, and 1666 peak pairs in plasma, RBCs, and PBMCs, respectively. We screened out 367, 177, and 219 significant metabolites in plasma, RBCs, and PBMCs, respectively, by principle component analyses, volcano plots, and Venn plots. Metabolic pathway analyses showed that irradiation modulated taurine and hypotaurine metabolism in plasma and purine metabolism in RBCs and PBMCs. Changes in potential biomarkers, including an increase in hypoxanthine level and a decrease in adenine level, may be related to the dysfunction of DNA synthesis in PBMCs. The decreased AMP level in RBCs may interfere with RBC storage lesions. Our research provides a more comprehensive perspective on blood metabolism associated with irradiation.
Collapse
Affiliation(s)
- Xuan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City, Zhejiang Province, 310003, China
| | - Xinli Zhu
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Deying Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City, Zhejiang Province, 310003, China
| | - Jiahang Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City, Zhejiang Province, 310003, China
| | - Jiong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City, Zhejiang Province, 310003, China
| | - Jue Xie
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, 79 Qingchun Rd, Hangzhou City 310003, China
| | - Senxiang Yan
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City, Zhejiang Province, 310003, China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, 79 Qingchun Rd, Hangzhou City 310003, China.
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City, Zhejiang Province, 310003, China
| |
Collapse
|
11
|
AGLR is a novel index for the prognosis of hepatocellular carcinoma patients: a retrospective study. BMC Surg 2021; 21:72. [PMID: 33536005 PMCID: PMC7860009 DOI: 10.1186/s12893-020-01037-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/27/2020] [Indexed: 02/08/2023] Open
Abstract
Background Most hepatocellular carcinoma (HCC) patients’ liver function indexes are abnormal. We aimed to investigate the relationship between (alkaline phosphatase + gamma-glutamyl transpeptidase)/lymphocyte ratio (AGLR) and the progression as well as the prognosis of HCC. Methods A total of 495 HCC patients undergoing radical hepatectomy were retrospectively analyzed. We randomly divided these patients into the training cohort (n = 248) and the validation cohort (n = 247). In the training cohort, receiver operating characteristic (ROC) curve was used to determine the optimal cut-off value of AGLR for predicting postoperative survival of HCC patients, and the predictive value of AGLR was evaluated by concordance index (C-index). Further analysis of clinical and biochemical data of patients and the correlation analysis between AGLR and other clinicopathological factors were finished. Univariate and multivariate analyses were performed to identify prognostic factors for HCC patients. Survival curves were analyzed using the Kaplan–Meier method. Results According to the ROC curve analysis, the optimal predictive cut-off value of AGLR was 90. The C-index of AGLR was 0.637 in the training cohort and 0.654 in the validation cohort, respectively. Based on this value, the HCC patients were divided into the low-AGLR group (AGLR ≤ 90) and the high-AGLR group (AGLR > 90). Preoperative AGLR level was positively correlated with alpha-fetoprotein (AFP), tumor size, tumor-node-metastasis (TNM) stage, and microvascular invasion (MVI) (all p < 0.05). In the training and validation cohorts, patients with AGLR > 90 had significantly shorter OS than patients with AGLR ≤ 90 (p < 0.001). Univariate and multivariate analyses of the training cohort (HR, 1.79; 95% CI 1.21–2.69; p < 0.001) and validation cohort (HR, 1.82; 95% CI 1.35–2.57; p < 0.001) had identified AGLR as an independent prognostic factor. A new prognostic scoring model was established based on the independent predictors determined in multivariate analysis. Conclusions The elevated preoperative AGLR level indicated poor prognosis for patients with HCC; the novel prognostic scoring model had favorable predictive capability for postoperative prognosis of HCC patients, which may bring convenience for clinical management.
Collapse
|