1
|
González-Gragera E, García-López JD, Boutine A, García-Marín ML, Fonollá J, Gil-Martínez L, Fernández I, Martínez-Bueno M, Baños A. Improving the Quality and Safety of Fish Products with Edible Coatings Incorporating Piscicolin CM22 from a Psychrotolerant Carnobacterium maltaromaticum Strain. Foods 2024; 13:3165. [PMID: 39410200 PMCID: PMC11476091 DOI: 10.3390/foods13193165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
The consumption of raw or smoked fish entails significant microbiological risks, including contamination by pathogens such as Listeria monocytogenes, which can cause severe foodborne illnesses. This study explores the preservative use of piscicolin CM22, a novel bacteriocin derived from the psychrotolerant strain Carnobacterium maltaromaticum CM22, in two types of edible coatings (EC): chitosan-based and fish gelatin-based. An initial in vitro characterization of the technological and antimicrobial properties of these ECs with and without bacteriocin was conducted. The efficacy of the edible coatings was subsequently evaluated through shelf life and challenge tests against L. monocytogenes in raw and smoked fish products. The results demonstrated significant antimicrobial activity, with the chitosan-based coating containing piscicolin CM22 being the most effective in reducing microbial counts and maintaining pH and color stability. Furthermore, in the challenge test studies, both ECs effectively controlled L. monocytogenes, showing significant reductions in bacterial counts compared to the controls in fresh tuna, salmon, and smoked salmon. The ECs containing piscicolin CM22 reduced Listeria counts by up to 4 log CFU/g in raw and smoked fish samples, with effective control in smoked salmon for up to 15 days at refrigeration temperature. While further research is required to fully assess their preservation potential, these findings strongly indicate that piscicolin CM22-functionalized edible coatings hold significant potential for improving the quality and safety of fish products.
Collapse
Affiliation(s)
- Elías González-Gragera
- Department of Microbiology, University of Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain; (E.G.-G.); (M.L.G.-M.); (M.M.-B.)
| | - José David García-López
- Department of Microbiology, DMC Research Center, Camino de Jayena s/n, 18620 Granada, Spain; (J.D.G.-L.); (A.B.); (L.G.-M.); (I.F.)
| | - Abdelkader Boutine
- Department of Microbiology, DMC Research Center, Camino de Jayena s/n, 18620 Granada, Spain; (J.D.G.-L.); (A.B.); (L.G.-M.); (I.F.)
| | - María Luisa García-Marín
- Department of Microbiology, University of Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain; (E.G.-G.); (M.L.G.-M.); (M.M.-B.)
| | - Juristo Fonollá
- Department of Nutrition and Food Technology, University of Granada, 18071 Granada, Spain
| | - Lidia Gil-Martínez
- Department of Microbiology, DMC Research Center, Camino de Jayena s/n, 18620 Granada, Spain; (J.D.G.-L.); (A.B.); (L.G.-M.); (I.F.)
| | - Inmaculada Fernández
- Department of Microbiology, DMC Research Center, Camino de Jayena s/n, 18620 Granada, Spain; (J.D.G.-L.); (A.B.); (L.G.-M.); (I.F.)
| | - Manuel Martínez-Bueno
- Department of Microbiology, University of Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain; (E.G.-G.); (M.L.G.-M.); (M.M.-B.)
- Institute of Biotechnology, University of Granada, 18071 Granada, Spain
| | - Alberto Baños
- Department of Microbiology, University of Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain; (E.G.-G.); (M.L.G.-M.); (M.M.-B.)
- Department of Microbiology, DMC Research Center, Camino de Jayena s/n, 18620 Granada, Spain; (J.D.G.-L.); (A.B.); (L.G.-M.); (I.F.)
| |
Collapse
|
2
|
Narayanan KB, Bhaskar R, Han SS. Bacteriophages: Natural antimicrobial bioadditives for food preservation in active packaging. Int J Biol Macromol 2024; 276:133945. [PMID: 39029821 DOI: 10.1016/j.ijbiomac.2024.133945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Developing innovative films and coatings is paramount for extending the shelf life of numerous food products and augmenting the barrier and antimicrobial properties of food packaging materials. Many synthetic chemicals used in active packaging and food storage have the potential to leach into food, posing long-term health risks. It is imperative for active packaging materials to inherently possess biological protective properties to ensure food quality and safety throughout its storage. Bacteriophages, or simply phages, are bacteria-eating viruses that serve as promising natural biocontrol agents and antimicrobial bioadditives in food packaging materials, specifically targeting bacterial foodborne pathogens. These phages are generally recognized as safe (GRAS) by regulatory authorities for food safety applications. They exhibit targeted action against various Gram-positive and -negative foodborne pathogens, including Bacillus spp., Campylobacter spp., Escherichia coli, Listeria monocytogenes, Salmonella spp., Shigella spp., and Vibrio spp., associated with foodborne spoilage and illness without affecting the beneficial microbes. Phage cocktails can be applied directly on food surfaces, incorporated into food packaging materials, or utilized during food processing treatments. Unlike chemical agents, phage activity increases proportionally with the rise in pathogenic bacterial populations. Researchers are exploring various packaging materials to deliver phages with broad host range, stability, and viability ensuring their effectiveness in safeguarding various food systems. The effectiveness of phage immobilization or encapsulation on active food packaging materials depends on various factors, including the characteristics of polymers, the choice of solvents, the type of phage, and its loading efficiency. Factors such as the orientation of phage immobilization on substrates, pH, temperature, exposure to carbohydrates and amino acids, exopolysaccharides, lipopolysaccharides, and metals can also influence phage activity. In this review, we comprehensively discuss the various active packaging systems utilizing bacteriophages as natural biocontrols and antimicrobial bioadditives to reduce the incidence of foodborne illness and enhance consumer confidence in the safety of food products.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, South Korea.
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, South Korea.
| |
Collapse
|
3
|
González-Gragera E, García-López JD, Teso-Pérez C, Jiménez-Hernández I, Peralta-Sánchez JM, Valdivia E, Montalban-Lopez M, Martín-Platero AM, Baños A, Martínez-Bueno M. Genomic Characterization of Piscicolin CM22 Produced by Carnobacterium maltaromaticum CM22 Strain Isolated from Salmon (Salmo salar). Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10316-1. [PMID: 38958914 DOI: 10.1007/s12602-024-10316-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
Carnobacterium maltaromaticum is a species of lactic acid bacteria (LAB) that has been isolated from various natural environments. It is well-known for producing a diverse spectrum of bacteriocins with potential biotechnological applications. In the present study, a new psychrotolerant strain of C. maltaromaticum CM22 is reported, isolated from a salmon gut sample and producing a variant of the bacteriocin piscicolin 126 that has been named piscicolin CM22. After identification by 16S rRNA gene, this strain has been genomically characterized by sequencing and assembling its complete genome. Moreover, its bacteriocin was purified and characterized. In vitro tests demonstrated that both the strain and its bacteriocin possess antimicrobial activity against several Gram-positive bacteria of interest in human and animal health, such as Listeria monocytogenes, Clostridium perfringens, or Enterococcus faecalis. However, this bacteriocin did not produce any antimicrobial effect on Gram-negative species. The study of its genome showed the genetic structure of the gene cluster that encodes the bacteriocin, showing a high degree of homology to the gene cluster of piscicolin 126 described in other C. maltaromaticum. Although more studies are necessary concerning its functional properties, this new psychrotolerant strain C. maltaromaticum CM22 and its bacteriocin could be considered an interesting candidate with potential application in agri-food industry.
Collapse
Affiliation(s)
- Elías González-Gragera
- Department of Microbiology, University of Granada, Avda. Fuentenueva, S/N, 18071, Granada, Spain
| | - J David García-López
- Department of Microbiology, University of Granada, Avda. Fuentenueva, S/N, 18071, Granada, Spain
| | - Claudia Teso-Pérez
- Department of Microbiology, University of Granada, Avda. Fuentenueva, S/N, 18071, Granada, Spain
| | - Irene Jiménez-Hernández
- Department of Microbiology, University of Granada, Avda. Fuentenueva, S/N, 18071, Granada, Spain
| | | | - Eva Valdivia
- Department of Microbiology, University of Granada, Avda. Fuentenueva, S/N, 18071, Granada, Spain
- Institute of Biotechnology, University of Granada, 18071, Granada, Spain
| | - Manuel Montalban-Lopez
- Department of Microbiology, University of Granada, Avda. Fuentenueva, S/N, 18071, Granada, Spain
- Institute of Biotechnology, University of Granada, 18071, Granada, Spain
| | - Antonio M Martín-Platero
- Department of Microbiology, University of Granada, Avda. Fuentenueva, S/N, 18071, Granada, Spain
- Institute of Biotechnology, University of Granada, 18071, Granada, Spain
| | - Alberto Baños
- Department of Microbiology, University of Granada, Avda. Fuentenueva, S/N, 18071, Granada, Spain
| | - Manuel Martínez-Bueno
- Department of Microbiology, University of Granada, Avda. Fuentenueva, S/N, 18071, Granada, Spain.
- Institute of Biotechnology, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
4
|
Morgan RN, Ali AA, Alshahrani MY, Aboshanab KM. New Insights on Biological Activities, Chemical Compositions, and Classifications of Marine Actinomycetes Antifouling Agents. Microorganisms 2023; 11:2444. [PMID: 37894102 PMCID: PMC10609280 DOI: 10.3390/microorganisms11102444] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Biofouling is the assemblage of undesirable biological materials and macro-organisms (barnacles, mussels, etc.) on submerged surfaces, which has unfavorable impacts on the economy and maritime environments. Recently, research efforts have focused on isolating natural, eco-friendly antifouling agents to counteract the toxicities of synthetic antifouling agents. Marine actinomycetes produce a multitude of active metabolites, some of which acquire antifouling properties. These antifouling compounds have chemical structures that fall under the terpenoids, polyketides, furanones, and alkaloids chemical groups. These compounds demonstrate eminent antimicrobial vigor associated with antiquorum sensing and antibiofilm potentialities against both Gram-positive and -negative bacteria. They have also constrained larval settlements and the acetylcholinesterase enzyme, suggesting a strong anti-macrofouling activity. Despite their promising in vitro and in vivo biological activities, scaled-up production of natural antifouling agents retrieved from marine actinomycetes remains inapplicable and challenging. This might be attributed to their relatively low yield, the unreliability of in vitro tests, and the need for optimization before scaled-up manufacturing. This review will focus on some of the most recent marine actinomycete-derived antifouling agents, featuring their biological activities and chemical varieties after providing a quick overview of the disadvantages of fouling and commercially available synthetic antifouling agents. It will also offer different prospects of optimizations and analysis to scale up their industrial manufacturing for potential usage as antifouling coatings and antimicrobial and therapeutic agents.
Collapse
Affiliation(s)
- Radwa N. Morgan
- National Centre for Radiation Research and Technology (NCRRT), Drug Radiation Research Department, Egyptian Atomic Energy Authority (EAEA), Ahmed El-Zomor St, Cairo 11787, Egypt;
| | - Amer Al Ali
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, Bisha 67714, Saudi Arabia;
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 9088, Saudi Arabia;
| | - Khaled M. Aboshanab
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo 11566, Egypt
| |
Collapse
|
5
|
Garmasheva IL, Oleschenko LT. Screening of bacteriocin-producing dairy Enterococcus strains using low-cost culture media. Front Microbiol 2023; 14:1168835. [PMID: 37333643 PMCID: PMC10272557 DOI: 10.3389/fmicb.2023.1168835] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
This study was carried out to select the bacteriocinogenic strains among Enterococcus strains isolated from Ukrainian traditional dairy products using a low-cost media for screening, that containing molasses and steep corn liquor. A total of 475 Enterococcus spp. strains were screened for antagonistic activity against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes indicator strains. The initial screening revealed that 34 Enterococcus strains during growth in low-cost medium containing corn steep liquor, peptone, yeast extract, and sucrose produced metabolites with inhibition activity against at least of the indicator strains used. Enterocin genes entA, entP, and entB were detected in 5 Enterococcus strains by PCR assay. Genes of enterocins A and P were found in E. faecalis 58 and Enterococcus sp. 226 strains, enterocins B and P - in Enterococcus sp. 423, enterocin A - in E. faecalis 888 and E. durans 248 strains. Bacteriocin-like inhibitory substances (BLIS) produced by these Enterococcus strains were thermostable and sensitive to proteolytic enzymes. To our knowledge, this is the first report on the isolation of enterocin-producing wild Enterococcus strains from traditional Ukrainian dairy products using a low-cost media for screening bacteriocinogenic strains. Strains E. faecalis 58, Enterococcus sp. 423, and Enterococcus sp. 226 are promising candidates for practical use as producers of bacteriocins with inhibitory activity against L. monocytogenes using molasses and steep corn liquor as cheap sources of carbon and nitrogen, that can significantly reduce the cost of industrial bacteriocin production. Further studies will be required to determine the dynamic of bacteriocin production, its structure, and mechanisms of antibacterial action.
Collapse
|
6
|
Ramalho R, de Souza NAA, Moreira TFM, De Oliveira A, Perini HF, Furlaneto MC, Leimann FV, Furlaneto-Maia L. Antibacterial efficacy of Enterococcus microencapsulated bacteriocin on Listeria monocytogenes, Listeria innocua and Listeria ivanovi. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:262-271. [PMID: 36618045 PMCID: PMC9813327 DOI: 10.1007/s13197-022-05611-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/26/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
This study focused on the microencapsulation of enterocin from Enterococcus durans (E. durans MF5) in whey powder (WP) using a spray-drying technique followed by the evaluation of how complexation can preserve the enterocin structure and antimicrobial activity against food-borne pathogens. Crude enterocin samples (1 and 5%) were microencapsulated in 10% WP. The antimicrobial activity of unencapsulated (crude) enterocin and microencapsulated enterocin was tested against the target bacteria Salmonella Typhimurium, Escherichia coli, Listeria monocytogenes, Listeria innocua, and Listeria ivanovi. The microencapsulation yields were 31.66% and 34.16% for concentrations of 1 and 5% enterocin, respectively. There was no significant difference between these concentrations. Microencapsulated enterocin was efficient for up to 12 h of cocultivation with Listeria sp., and the concentration required to inhibit the growth of target bacteria presented values of 6400 AU/mL (arbitrary unit). Microencapsulated enterocin demonstrated enhanced efficacy against Listeria species and E. coli when compared with crude enterocin (p < 0.05). Fourier transform-infrared spectroscopy and differential scanning calorimetry results confirmed the presence of enterocin in the microparticles. Scanning electron microscopy showed cell damage of the target bacteria. The results showed that complexation with WP preserved enterocin antimicrobial activity during spray-drying, indicating its potential use as a food preservative.
Collapse
Affiliation(s)
- Regiane Ramalho
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), Via Rosalina Maria Dos Santos, 1233, Campo Mourão, Paraná CEP 87301-899 Brazil
| | | | - Thaysa Fernandes Moya Moreira
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), Via Rosalina Maria Dos Santos, 1233, Campo Mourão, Paraná CEP 87301-899 Brazil
| | - Anielle De Oliveira
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), Via Rosalina Maria Dos Santos, 1233, Campo Mourão, Paraná CEP 87301-899 Brazil
| | - Hugo Felix Perini
- Department of Microbiology, State University of Londrina, C.P. 6001, Londrina, Paraná 86051990 Brazil
| | - Márcia Cristina Furlaneto
- Department of Microbiology, State University of Londrina, C.P. 6001, Londrina, Paraná 86051990 Brazil
| | - Fernanda Vitória Leimann
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), Via Rosalina Maria Dos Santos, 1233, Campo Mourão, Paraná CEP 87301-899 Brazil
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Luciana Furlaneto-Maia
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Londrina (UTFPR-LD), Av Dos Pioneiros 3131, Londrina, Paraná CEP 86036-370 Brazil
| |
Collapse
|
7
|
Rahmani M, Saffari F, Domann E, Zimmermann K, Langroudi L, Mansouri S. Enterococci as Intestinal Microbiota: Investigation of Characteristics and Probiotic Potential in Isolates from Adults and Breast-Fed Infants. Probiotics Antimicrob Proteins 2022; 14:1139-1150. [PMID: 35585423 DOI: 10.1007/s12602-022-09951-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2022] [Indexed: 12/25/2022]
Abstract
Enterococci act as symbionts in human gastrointestinal tract. The present study aimed to evaluate the characteristics of fecal enterococci isolated from infants and adults, and to compare them to the known probiotic bacteria, including lactobacilli species and E. faecalis Symbioflor 1. In total, sporadic distribution of virulence genes was detected among the studied enterococci. Furthermore, the frequency of genes encoding for sex pheromones (ccf and cob), collagen adhesion (ace), cell wall adhesion (efaAfs), and gelatinase (gelE) was observed to be significantly higher in those isolates obtained from infants compared to those obtained from adults. Although the ability of biofilm formation was found in all isolates, the strong biofilm formation was observed in enterococci from infants and strong correlation was observed between the capacities to form biofilm and attachment to Caco-2 cells. Cell-free culture supernatant showed some inhibitory effects on indicator strains, which were related to the production of organic acids (against P. aeruginosa and enteropathogenic E. coli) or both organic acids and proteinaceous antimicrobial agents (against L. monocytogenes and E. faecalis). Approximately, 79% and 71% of the isolates showed strong inhibitory effects on P. aeruginosa and L. monocytogenes, respectively. Unlike lactobacilli, enterococcal cell-free supernatants had no toxicity on intestinal cells. In conclusion, this study shows that some enterococcal isolates obtained from fecal microbiota have characteristics, which are comparable with the known probiotic bacteria. Therefore, these isolates should be considered to find probiotic candidate. The proteinaceous identity of antimicrobial substances derived from these isolates highlighted the probable contribution of bacteriocins into this issue.
Collapse
Affiliation(s)
- Maryam Rahmani
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fereshteh Saffari
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Eugen Domann
- Institute of Hygiene and Environmental Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Kurt Zimmermann
- Symbiopharm Gmbh, Auf den Lueppen 10, 35745, Herborn, Germany
| | - Ladan Langroudi
- Department of Medical Immunology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahla Mansouri
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
8
|
Vesković-Moračanin S, Dragutin Đ, Velebit B, Borović B, Milijašević M, Stojanova M. Determination of antilisterial effect of some microbial isolates from traditional zlatar cheese during the fermentation of soft white cheese. FOOD SCI TECHNOL INT 2022:10820132221097871. [PMID: 35484809 DOI: 10.1177/10820132221097871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study was to select autochthonous lactic acid bacteria (LAB) isolates with antilisterial activity from Zlatar cheese and to evaluate the ability of selected LAB to control Listeria monocytogenes growth during soft white cheese production. The genotype characterization of isolated LAB (n = 93) was done using PCR method by 16S rRNA sequencing. In this way, the following isolates were detected: Lactococcus lactis ssp. lactis (40 isolates), Enterococcus faecalis (30), Lactobacillus plantarum (12), Leuconostoc mesenteroides ssp. mesenteroides (3) Lactobacillus garvieae (3), Lactobacillus curvatus (2), Lactobacillus casei (1), Enterococcus faecium (1) and Staphylococcus hominis (1). Each isolated LAB was tested for bacteriocin-producing ability. It was determined that two LAB isolates had bactericidal properties: Lactococcus lactis ssp. lactis SRB/ZS/094 and Enterococcus faecalis SRB/ZS/090. Semi-purified of enterococcal bacteriocin (enterocin) was isolated using precipitation procedures with ammonium sulphate. Its properties were determined (strength and range of activities). Isolated enterocin and bacteriocin-producing Lactococcus strain showed significant antimicribial activity against Listeria monocytogenes, but still the inhibition activity of Staphylococcus aurues and Escherichia coli was not detected. Based on the obtained laboratory results, in the second phase of the research, the antilisterial effect of bacteriocin isolated from Enterococcus faecalis SRB/ZS/090 and cells Lactococcus lactis ssp. lactis SRB/ZS/094 were determined, that are added as additives in the production of soft white cheese through five variants. Cheese supplemented with enterocin (E2) had the lowest aerobic mesophilic bacteria count, indicating that enterocin (E2) play an important role for bio-preservation.
Collapse
Affiliation(s)
| | - Đukić Dragutin
- Department of Microbiology, Faculty of Agronomy Čačak, 127740University of Kragujevac, Cara Dusana 34, 32000 Čačak, Serbia
| | - Branko Velebit
- 229778Institute of Meat Hygiene and Technology, Kaćanskog 13, 11000 Beograd, Serbia
| | - Branka Borović
- 229778Institute of Meat Hygiene and Technology, Kaćanskog 13, 11000 Beograd, Serbia
| | - Milan Milijašević
- 229778Institute of Meat Hygiene and Technology, Kaćanskog 13, 11000 Beograd, Serbia
| | - Monika Stojanova
- Faculty of Agriculture, 54801University of Belgrade, Nemanjina 6 Str., Belgrade 11000, Serbia
| |
Collapse
|
9
|
Wu Y, Pang X, Wu Y, Liu X, Zhang X. Enterocins: Classification, Synthesis, Antibacterial Mechanisms and Food Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072258. [PMID: 35408657 PMCID: PMC9000605 DOI: 10.3390/molecules27072258] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 01/15/2023]
Abstract
Enterococci, a type of lactic acid bacteria, are widely distributed in various environments and are part of the normal flora in the intestinal tract of humans and animals. Although enterococci have gradually evolved pathogenic strains causing nosocomial infections in recent years, the non-pathogenic strains have still been widely used as probiotics and feed additives. Enterococcus can produce enterocin, which are bacteriocins considered as ribosomal peptides that kill or inhibit the growth of other microorganisms. This paper reviews the classification, synthesis, antibacterial mechanisms and applications of enterocins, and discusses the prospects for future research.
Collapse
Affiliation(s)
- Yajing Wu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Y.W.); (X.P.); (Y.W.); (X.L.)
| | - Xinxin Pang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Y.W.); (X.P.); (Y.W.); (X.L.)
| | - Yansha Wu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Y.W.); (X.P.); (Y.W.); (X.L.)
| | - Xiayu Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Y.W.); (X.P.); (Y.W.); (X.L.)
| | - Xinglin Zhang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Y.W.); (X.P.); (Y.W.); (X.L.)
- College of Agriculture and Forestry, Linyi University, Linyi 276005, China
- Correspondence: ; Tel.: +86-571-86984316
| |
Collapse
|
10
|
Terzić-Vidojević A, Veljović K, Popović N, Tolinački M, Golić N. Enterococci from Raw-Milk Cheeses: Current Knowledge on Safety, Technological, and Probiotic Concerns. Foods 2021; 10:2753. [PMID: 34829034 PMCID: PMC8624194 DOI: 10.3390/foods10112753] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022] Open
Abstract
The present study is focused on the safety, technological characteristics, and probiotic evaluation of Enterococcus species from different artisanal raw milk dairy products, mainly cheeses with ripening. Apart from proteolytic and lipolytic activities, most enterococci show the ability to metabolize citrate and convert it to various aromatic compounds. Long-ripened cheeses therefore have a specific flavor that makes them different from cheeses produced from thermally treated milk with commercial starter cultures. In addition, enterococci are producers of bacteriocins effective against spoilage and pathogenic bacteria, so they can be used as food preservatives. However, the use of enterococci in the dairy industry should be approached with caution. Although originating from food, enterococci strains may carry various virulence factors and antibiotic-resistance genes and can have many adverse effects on human health. Still, despite their controversial status, the use of enterococci in the food industry is not strictly regulated since the existence of these so-called desirable and undesirable traits in enterococci is a strain-dependent characteristic. To be specific, the results of many studies showed that there are some enterococci strains that are safe for use as starter cultures or as probiotics since they do not carry virulence factors and antibiotic-resistance genes. These strains even exhibit strong health-promoting effects such as stimulation of the immune response, anti-inflammatory activity, hypocholesterolemic action, and usefulness in prevention/treatment of some diseases.
Collapse
Affiliation(s)
- Amarela Terzić-Vidojević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (K.V.); (N.P.); (M.T.); (N.G.)
| | | | | | | | | |
Collapse
|
11
|
Ferchichi M, Sebei K, Boukerb AM, Karray-Bouraoui N, Chevalier S, Feuilloley MGJ, Connil N, Zommiti M. Enterococcus spp.: Is It a Bad Choice for a Good Use-A Conundrum to Solve? Microorganisms 2021; 9:2222. [PMID: 34835352 PMCID: PMC8622268 DOI: 10.3390/microorganisms9112222] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Since antiquity, the ubiquitous lactic acid bacteria (LAB) Enterococci, which are just as predominant in both human and animal intestinal commensal flora, have been used (and still are) as probiotics in food and feed production. Their qualities encounter several hurdles, particularly in terms of the array of virulence determinants, reflecting a notorious reputation that nearly prevents their use as probiotics. Additionally, representatives of the Enterococcus spp. genus showed intrinsic resistance to several antimicrobial agents, and flexibility to acquire resistance determinants encoded on a broad array of conjugative plasmids, transposons, and bacteriophages. The presence of such pathogenic aspects among some species represents a critical barrier compromising their use as probiotics in food. Thus, the genus neither has Generally Recognized as Safe (GRAS) status nor has it been included in the Qualified Presumption of Safety (QPS) list implying drastic legislation towards these microorganisms. To date, the knowledge of the virulence factors and the genetic structure of foodborne enterococcal strains is rather limited. Although enterococcal infections originating from food have never been reported, the consumption of food carrying virulence enterococci seems to be a risky path of transfer, and hence, it renders them poor choices as probiotics. Auspiciously, enterococcal virulence factors seem to be strain specific suggesting that clinical isolates carry much more determinants that food isolates. The latter remain widely susceptible to clinically relevant antibiotics and subsequently, have a lower potential for pathogenicity. In terms of the ideal enterococcal candidate, selected strains deemed for use in foods should not possess any virulence genes and should be susceptible to clinically relevant antibiotics. Overall, implementation of an appropriate risk/benefit analysis, in addition to the case-by-case assessment, the establishment of a strain's innocuity, and consideration for relevant guidelines, legislation, and regulatory aspects surrounding functional food development seem to be the crucial elements for industries, health-staff and consumers to accept enterococci, like other LAB, as important candidates for useful and beneficial applications in food industry and food biotechnology. The present review aims at shedding light on the world of hurdles and limitations that hampers the Enterococcus spp. genus and its representatives from being used or proposed for use as probiotics. The future of enterococci use as probiotics and legislation in this field are also discussed.
Collapse
Affiliation(s)
- Mounir Ferchichi
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis 1006, Tunisia; (M.F.); (K.S.)
| | - Khaled Sebei
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis 1006, Tunisia; (M.F.); (K.S.)
| | - Amine Mohamed Boukerb
- Laboratoire de Microbiologie, Signaux et Microenvironnement (LMSM) EA 4312, Université de Rouen Normandie, 27000 Evreux, France; (A.M.B.); (S.C.); (M.G.J.F.); (N.C.)
| | - Najoua Karray-Bouraoui
- Laboratoire de Productivité Végétale et Contraintes Abiotiques, LR18ES04, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis 2092, Tunisia;
| | - Sylvie Chevalier
- Laboratoire de Microbiologie, Signaux et Microenvironnement (LMSM) EA 4312, Université de Rouen Normandie, 27000 Evreux, France; (A.M.B.); (S.C.); (M.G.J.F.); (N.C.)
| | - Marc G. J. Feuilloley
- Laboratoire de Microbiologie, Signaux et Microenvironnement (LMSM) EA 4312, Université de Rouen Normandie, 27000 Evreux, France; (A.M.B.); (S.C.); (M.G.J.F.); (N.C.)
| | - Nathalie Connil
- Laboratoire de Microbiologie, Signaux et Microenvironnement (LMSM) EA 4312, Université de Rouen Normandie, 27000 Evreux, France; (A.M.B.); (S.C.); (M.G.J.F.); (N.C.)
| | - Mohamed Zommiti
- Laboratoire de Microbiologie, Signaux et Microenvironnement (LMSM) EA 4312, Université de Rouen Normandie, 27000 Evreux, France; (A.M.B.); (S.C.); (M.G.J.F.); (N.C.)
| |
Collapse
|
12
|
Tang HW, Abbasiliasi S, Ng ZJ, Lee YY, Tang TK, Tan JS. Insight into the pilot-scale fed-batch fermentation for production of Enterococcus faecium CW3801 using molasses-based medium. Prep Biochem Biotechnol 2021; 52:691-700. [PMID: 34647854 DOI: 10.1080/10826068.2021.1986721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Enterococcus sp. has been used as starters in food fermentation due to their probiotic and antimicrobial properties in food biopreservation. The antimicrobial properties were mainly contributed by the bacteriocin called enterocin. Hence, the availability of a cost-effective pilot-scale cultivation conditions is a necessity for the production of probiotic bacteria. This study aims to investigate optimization of medium composition using sugarcane molasses as a carbon source using response surface methodology and the potential use of fed-batch cultivation for improvement of the cell viability of Enterococcus faecium CW3801 for the use as a probiotic starter culture. Two feeding strategies (ramp and constant) were applied in fed-batch cultivation for enhancement of the production of E. faecium in a 2-L stirred tank bioreactor using the optimized medium and scaled up to a 15-L bioreactor. Optimized fermentation medium which comprised of 10% (v/v) of molasses and 10 g/L of yeast extract at pH 7 yielded maximum cell viability of 29.4 × 1011 CFU/mL with 3900 AU/mL of bacteriocin-like inhibitory substances (BLIS) activity. In the fed-batch, the cell viability (8.4 × 1013) and dry cell weight (6.34 g/L) reached the highest in optimized medium when the ramp (stepwise) feeding was applied. In scaling up to 15-L bioreactor, the growth of E. faecium was achieved at 2.3 × 1013 CFU/mL with the dry cell weight of 5.28 g/L under the same condition. The BLIS in 15-L bioreactor was 6% higher than the 2-L bioreactor. This study demonstrated that molasses and yeast extract are good feedstock for the growth of E. faecium. The E. faecium, a non-vancomycin resistant enterococcus (VRE) was successfully produced by a fed-batch cultivation approach and scaled up to a 15-L bioreactor using a ramp feeding strategy. Results from this study revealed that the fed-batch cultivation using molasses-based medium has industrial potential for the production of probiotics.
Collapse
Affiliation(s)
- Hock Wei Tang
- Bioprocess Technology, School of Industrial Technology, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Sahar Abbasiliasi
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Malaysia
| | - Zhang Jin Ng
- Bioprocess Technology, School of Industrial Technology, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Yee-Ying Lee
- School of Science, Monash University Malaysia, Selangor, Malaysia
| | - Teck-Kim Tang
- International Joint Laboratory on Plant Oils Processing and Safety, Institute of Bioscience, University Putra Malaysia, Serdang, Malaysia
| | - Joo Shun Tan
- Bioprocess Technology, School of Industrial Technology, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| |
Collapse
|
13
|
Khorshidian N, Khanniri E, Mohammadi M, Mortazavian AM, Yousefi M. Antibacterial Activity of Pediocin and Pediocin-Producing Bacteria Against Listeria monocytogenes in Meat Products. Front Microbiol 2021; 12:709959. [PMID: 34603234 PMCID: PMC8486284 DOI: 10.3389/fmicb.2021.709959] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/23/2021] [Indexed: 02/05/2023] Open
Abstract
One of the most important challenges in the food industry is to produce healthy and safe food products, and this could be achieved through various processes as well as the use of different additives, especially chemical preservatives. However, consumer awareness and concern about chemical preservatives have led researchers to focus on the use of natural antimicrobial compounds such as bacteriocins. Pediocins, which belong to subclass IIa of bacteriocin characterized as small unmodified peptides with a low molecular weight (2.7-17 kDa), are produced by some of the Pediococcus bacteria. Pediocin and pediocin-like bacteriocins exert a broad spectrum of antimicrobial activity against Gram-positive bacteria, especially against pathogenic bacteria, such as Listeria monocytogenes through formation of pores in the cytoplasmic membrane and cell membrane dysfunction. Pediocins are sensitive to most protease enzymes such as papain, pepsin, and trypsin; however, they keep their antimicrobial activity during heat treatment, at low temperatures even at -80°C, and after treatment with lipase, lysozyme, phospholipase C, DNase, or RNase. Due to the anti-listeria activity of pediocin on the one hand and the potential health hazards associated with consumption of meat products on the other hand, this review aimed to investigate the possible application of pediocin in preservation of meat and meat products against L. monocytogenes.
Collapse
Affiliation(s)
- Nasim Khorshidian
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Khanniri
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Mohammadi
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir M. Mortazavian
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Yousefi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
14
|
Bacteriocins from Lactic Acid Bacteria. A Powerful Alternative as Antimicrobials, Probiotics, and Immunomodulators in Veterinary Medicine. Animals (Basel) 2021; 11:ani11040979. [PMID: 33915717 PMCID: PMC8067144 DOI: 10.3390/ani11040979] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
In the search for an alternative treatment to reduce antimicrobial resistance, bacteriocins shine a light on reducing this problem in public and animal health. Bacteriocins are peptides synthesized by bacteria that can inhibit the growth of other bacteria and fungi, parasites, and viruses. Lactic acid bacteria (LAB) are a group of bacteria that produce bacteriocins; their mechanism of action can replace antibiotics and prevent bacterial resistance. In veterinary medicine, LAB and bacteriocins have been used as antimicrobials and probiotics. However, another critical role of bacteriocins is their immunomodulatory effect. This review shows the advances in applying bacteriocins in animal production and veterinary medicine, highlighting their biological roles.
Collapse
|
15
|
Lakshmanan R, Kalaimurugan D, Sivasankar P, Arokiyaraj S, Venkatesan S. Identification and characterization of Pseudomonas aeruginosa derived bacteriocin for industrial applications. Int J Biol Macromol 2020; 165:2412-2418. [PMID: 33132130 DOI: 10.1016/j.ijbiomac.2020.10.126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 11/19/2022]
Abstract
Drug resistance has become a major threat due to the frequent use of commercial antibiotics and there is an urgent need to combat this problem. Having this in mind, the present research was aimed at developing a novel P. aeruginosa puBac bacteriocin molecule. The bacteriocin was purified by ammonium sulfate precipitation followed by Sepharose FF and Sephadex G15 column purification and the purified bacteriocin has been reported to have the molar mass of 43 kDa. The findings of the optimization showed that 3500 AU/mL of bacteriocin was obtained at 37 °C, 3410 AU/mL of bacteriocin at 6.5 pH and 3780 AU/mL of bacteriocin at 48 h of incubation time. In addition, 3863 AU/mL of bacteriocin activity was obtained with Tween-80 followed by 3789 AU/mL with a concentration of 2% NaCl and 4200 AU/mL for Fe2+. PuBac bacteriocin has been shown to have a significant effect on test pathogens. For example, E. coli was found to have 3.6 μM of MIC, followed by Staphylococcus sp. with 6.15 μM of MIC and Bacillus sp. with a 7.5 μM of MIC. The remarkable properties of bacteriocin suggest that it could be used in various pharmaceutical and food industries.
Collapse
Affiliation(s)
- Ramasamy Lakshmanan
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem 636011, Tamil Nadu, India
| | - Dharman Kalaimurugan
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem 636011, Tamil Nadu, India
| | - Palaniappan Sivasankar
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem 636011, Tamil Nadu, India
| | - Selvaraj Arokiyaraj
- Department of Food Science and Biotechnology, Sejong University, Republic of Korea
| | - Srinivasan Venkatesan
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem 636011, Tamil Nadu, India.
| |
Collapse
|
16
|
Roshanak S, Shahidi F, Tabatabaei Yazdi F, Javadmanesh A, Movaffagh J. Evaluation of Antimicrobial Activity of Buforin I and Nisin and Synergistic Effect of the Combination of them as a Novel Antimicrobial Preservative. J Food Prot 2020; 83:2018-2025. [PMID: 32502264 DOI: 10.4315/jfp-20-127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022]
Abstract
One of the most effective methods for increasing the antimicrobial activity of a substance is to combine it with one or more other antimicrobial agents. The aim of the present study was to evaluate the antimicrobial effect of buforin I and nisin alone and investigate the synergistic action of these compounds against the most important food spoilage microorganisms in clouding B. subtilis, S. epidermidis, L. innocua, E. coli, S. Enteritidis, A. oryzae, R. glutinis and G. candidum. The results of MIC and MBC/MFC examinations showed that buforin I had higher antimicrobial activity than nisin on all the microbial strains used in this study (p≤0.5). E.coli was the most resistant to both antimicrobial agents, while Listeria innocua and Staphylococcus epidermidis were the most sensitive to nisin and buforin I, respectively. The results of synergistic interaction between buforin I and nisin indicated that the combination of buforin I and nisin on B. subtilis, S. epidermidis and A. oryzae showed synergistic effect, while it had no effect on S. Enteritidis and Geotrichum candidum. The combination of buforin I and nisin showed partial synergistic effect on Listeria innocua, Escherichia coli, Rhodotorula glutinis. Assessment of viability of the microorganisms under the antimicrobial agents alone and in combination with each other at MICs and FICs indicated that use of these antimicrobial agents in combination enhances antimicrobial activity at lower concentrations of both agents. The present study investigated the antimicrobial properties of buforin I against food spoilage microorganisms for the first time and suggests that its use alone or in combination with nisin may provide a clear horizon for the application of antimicrobial peptides as natural preservatives. Thus, the combination of antimicrobial peptides and traditional antimicrobial food preservative could be a promising option for the prevention of contamination, spoilage, and infestation of food and beverage products.
Collapse
Affiliation(s)
| | - Fakhri Shahidi
- Ferdowsi University of Mashhad Professor Food science and Technology Azadi IRAN (ISLAMIC REPUBLIC OF) Mashhad Razavi Khorasan 9177948974
| | | | | | | |
Collapse
|
17
|
Tarrah A, Pakroo S, Lemos Junior WJF, Guerra AF, Corich V, Giacomini A. Complete Genome Sequence and Carbohydrates-Active EnZymes (CAZymes) Analysis of Lactobacillus paracasei DTA72, a Potential Probiotic Strain with Strong Capability to Use Inulin. Curr Microbiol 2020; 77:2867-2875. [PMID: 32623485 DOI: 10.1007/s00284-020-02089-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
The whole genome sequence of Lactobacillus paracasei DTA72, isolated from healthy infant feces, is reported, along with the Carbohydrates-Active enZymes (CAZymes) analysis and an in silico safety assessment. Strain DTA72 had previously demonstrated some interesting potential probiotic features, such as a good resistance to gastrointestinal conditions and an anti-Listeria activity. The 3.1 Mb sequenced genome consists of 3116 protein-coding sequences distributed on 340 SEED subsystems. In the present study, we analyzed the fermentation capability of strain DTA72 on six different carbohydrate sources, namely, glucose, fructose, lactose, galactose, xylose, and inulin by using phenotypical and genomic approaches. Interestingly, L. paracasei DTA72 evidenced the best growth performances on inulin with a much shorter lag phase and higher number of cells at the stationary phase in comparison with all the sugars tested. The CAZyme analysis using the predicted amino acid sequences detected 80 enzymes, distributed into the five CAZymes classes. Moreover, the in silico analysis revealed the absence of blood hemolytic genes, transmissible antibiotic resistances, and plasmids in DTA72. The results described in this study, together with those previously reported and particularly the strong capability to utilize inulin as energy source, make DTA72 a very interesting potential probiotic strain to be considered for the production of synbiotic foods. The complete genome data have been deposited in GenBank under the accession number WUJH00000000.
Collapse
Affiliation(s)
- Armin Tarrah
- Department of Agronomy Food Natural Resources Animal and Environment (DAFNAE), University of Padova, viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - Shadi Pakroo
- Department of Agronomy Food Natural Resources Animal and Environment (DAFNAE), University of Padova, viale dell'Università 16, 35020, Legnaro, PD, Italy
| | | | - Andre Fioravante Guerra
- Department of Food Engineering, Federal Center of Technological Education Celso Suckow da Fonseca, Valença, RJ, 27.600-000, Brazil
| | - Viviana Corich
- Department of Agronomy Food Natural Resources Animal and Environment (DAFNAE), University of Padova, viale dell'Università 16, 35020, Legnaro, PD, Italy.
| | - Alessio Giacomini
- Department of Agronomy Food Natural Resources Animal and Environment (DAFNAE), University of Padova, viale dell'Università 16, 35020, Legnaro, PD, Italy
| |
Collapse
|